Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Metal ion complexation by soft nanoparticles: the effect of Ca2+ on electrostatic and chemical contributions to the Eigen-type reaction rate

Raewyn M. Town
+ Author Affiliations
- Author Affiliations

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark. Email: raewyn.town@sdu.dk

Environmental Chemistry 12(2) 130-137 https://doi.org/10.1071/EN14086
Submitted: 27 April 2014  Accepted: 14 August 2014   Published: 17 February 2015

Environmental context. The speciation of trace metals in the environment is often dominated by complexation with natural organic matter such as humic acid. Humic acid is a negatively charged soft nanoparticle and its electrostatic properties play an important role in its reactivity with metal ions. The presence of major cations, such as Ca2+, can decrease the effective negative charge in the humic acid particle body and thus modify the chemodynamics of its interactions with trace metal ions.

Abstract. The effect of Ca2+ on the chemodynamics of PbII complexation by humic acid (HA) is interpreted in terms of theory for permeable charged nanoparticles. The effect of the electrostatic field of a negatively charged nanoparticle on its rate of association with metal cations is governed by the interplay of (i) conductive enhancement of the diffusion of cations from the medium to the particle and (ii) ionic Boltzmann equilibration with the bulk solution leading to accumulation of cations in the particle body. Calcium ions accumulate electrostatically within the HA body and thus lower the magnitude of the negative potential in the particle. For the case where trace metal complexation takes place in a medium in which the particulate electrostatic field is set by pre-equilibration in the electrolyte, the lability of Pb-HA complexes is found to be significantly increased in Ca2+-containing electrolyte, consistent with the predicted change in particle potential. Furthermore, the rate-limiting step changes from diffusive supply to the particle body in a 1–1 electrolyte, to inner-sphere complexation in a 2–1 electrolyte. The results provide insights into the electrostatic and covalent contributions to the thermodynamics and kinetics of trace metal binding by soft nanoparticles.


References

[1]  H. P. van Leeuwen, J. Buffle, Chemodynamics of aquatic metal complexes: from small ligands to colloids. Environ. Sci. Technol. 2009, 43, 7175.
Chemodynamics of aquatic metal complexes: from small ligands to colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFOjsbY%3D&md5=c4b04b96d53dae9de905fb23c05aaea6CAS | 19848119PubMed |

[2]  H. P. van Leeuwen, J. Buffle, J. F. L. Duval, R. M. Town, Understanding the extraordinary ionic reactivity of aqueous nanoparticles. Langmuir 2013, 29, 10 297.
Understanding the extraordinary ionic reactivity of aqueous nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Wju73K&md5=9d35b37f41a9071a631a59554bd0e9d4CAS |

[3]  R. M. Town, J. F. L. Duval, J. Buffle, H. P. van Leeuwen, Chemodynamics of metal complexation by natural soft colloids: Cu(II) binding by humic acid. J. Phys. Chem. A 2012, 116, 6489.
Chemodynamics of metal complexation by natural soft colloids: Cu(II) binding by humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFKksLk%3D&md5=b965b748368ab2627f7242bfda0bcbe8CAS | 22324832PubMed |

[4]  R. M. Town, H. P. van Leeuwen, Labilities of aqueous nanoparticulate metal complexes in environmental speciation analysis. Environ. Chem. 2014, 11, 196.
Labilities of aqueous nanoparticulate metal complexes in environmental speciation analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslymt7c%3D&md5=fb6c0206556e5f87f01792b8451d4011CAS |

[5]  K. W. Warnken, W. Davison, H. Zhang, J. Galceran, J. Puy, In situ measurements of metal complex exchange kinetics in freshwater. Environ. Sci. Technol. 2007, 41, 3179.
In situ measurements of metal complex exchange kinetics in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsV2mur0%3D&md5=048599173679cc6c2a6af860481d4091CAS | 17539523PubMed |

[6]  L. Weng, W. H. van Riemsdijk, E. J. M. Temminghoff, Effects of lability of metal complex on free ion measurement using DMT. Environ. Sci. Technol. 2010, 44, 2529.
Effects of lability of metal complex on free ion measurement using DMT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVGqtL0%3D&md5=0472d3a02a83d07ad77ca1da63e63e39CAS | 20163175PubMed |

[7]  M. A. G. T. van den Hoop, H. P. van Leeuwen, J. P. Pinheiro, A. M. Mota, M. L. Simões Gonçalves, Voltammetric analysis of the competition between calcium and heavy metals for complexation by humic material. Colloids Surf. A. 1995, 95, 305.
Voltammetric analysis of the competition between calcium and heavy metals for complexation by humic material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFert7w%3D&md5=8096ae24398fe20a10b34c9ff04b1b39CAS |

[8]  L. A. Oste, E. J. M. Temminghoff, T. M. Lexmond, W. H. van Riemsdijk, Measuring and modeling zinc and cadmium binding by humic acid. Anal. Chem. 2002, 74, 856.
Measuring and modeling zinc and cadmium binding by humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVeksA%3D%3D&md5=b7fd8b14c1233c1c44e71bbe524d4ad2CAS | 11871375PubMed |

[9]  L. Marang, P. E. Reiller, S. Eidner, M. U. Kumke, M. F. Benedetti, Combining spectroscopic and potentiometric approaches to characterize competitive binding to humic substances. Environ. Sci. Technol. 2008, 42, 5094.
Combining spectroscopic and potentiometric approaches to characterize competitive binding to humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlKrur8%3D&md5=3a40c6fbbe00b093ae6c95d76fc50bccCAS | 18754353PubMed |

[10]  D. G. Kinniburgh, C. J. Milne, M. F. Benedetti, J. P. Pinheiro, J. Filius, L. K. Koopal, W. H. van Riemsdijk, Metal ion binding by humic acid: application of the NICA–Donnan model. Environ. Sci. Technol. 1996, 30, 1687.
Metal ion binding by humic acid: application of the NICA–Donnan model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVKgtL4%3D&md5=816872966e5b68e1541e5bf2fef8d35dCAS |

[11]  S. Orsetti, J. L. Marco-Brown, E. M. Andrade, F. V. Molina, Pb(II) binding to humic substances: an equilibrium and spectroscopic study. Environ. Sci. Technol. 2013, 47, 8325.
| 1:CAS:528:DC%2BC3sXhtVWhtL7J&md5=f245e939a411458d01d8ea22a7a8fdacCAS | 23805795PubMed |

[12]  H. P. van Leeuwen, J. Buffle, R. M. Town, Electric relaxation processes in chemodynamics of aqueous metal complexes: from simple ligands to soft nanoparticulate complexes. Langmuir 2012, 28, 227.
Electric relaxation processes in chemodynamics of aqueous metal complexes: from simple ligands to soft nanoparticulate complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCitr7E&md5=ce3885259f9aa7a10f5ce5fe93004fcbCAS | 22126743PubMed |

[13]  H. P. van Leeuwen, R. M. Town, J. Buffle, Chemodynamics of soft nanoparticulate metal complexes in aqueous media: basic theory for spherical particles with homogeneous spatial distributions of sites and charges. Langmuir 2011, 27, 4514.
Chemodynamics of soft nanoparticulate metal complexes in aqueous media: basic theory for spherical particles with homogeneous spatial distributions of sites and charges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Ghs78%3D&md5=50c07d3f0fb1e5d4c076bc9ba7404f88CAS | 21410210PubMed |

[14]  R. M. Town, J. Buffle, J. F. L. Duval, H. P. van Leeuwen, Chemodynamics of soft charged nanoparticles in aquatic media: fundamental concepts. J. Phys. Chem. A 2013, 117, 7643.
Chemodynamics of soft charged nanoparticles in aquatic media: fundamental concepts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWhurbK&md5=786a2316f9991c4007b4498586b97857CAS | 23806009PubMed |

[15]  J. F. L. Duval, H. P. van Leeuwen, Rates of ionic reactions with charged nanoparticles in aqueous media. J. Phys. Chem. A 2012, 116, 6443.
Rates of ionic reactions with charged nanoparticles in aqueous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCrsLbE&md5=f3b83791b5f24d705a8e3f508eaedb57CAS |

[16]  H. P. van Leeuwen, Revisited: the conception of lability of metal complexes. Electroanal. 2001, 13, 826.
Revisited: the conception of lability of metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFKksbw%3D&md5=e17ffb6b5bd6d49489c36296f0b27febCAS |

[17]  H. P. van Leeuwen, R. M. Town, J. Buffle, R. F. M. J. Cleven, W. Davison, J. Puy, W. H. van Riemsdijk, L. Sigg, Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol. 2005, 39, 8545.
Dynamic speciation analysis and bioavailability of metals in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOis73M&md5=474d97d2e2363540e2360e03b1f4a98fCAS | 16323747PubMed |

[18]  H. P. van Leeuwen, J. Puy, J. Galceran, J. Cecília, Evaluation of the Koutecký–Koryta approximation for voltammetric currents generated by metal complex systems with various labilities. J. Electroanal. Chem. 2002, 526, 10.
Evaluation of the Koutecký–Koryta approximation for voltammetric currents generated by metal complex systems with various labilities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGmsb4%3D&md5=05d4690c2ceb04d95568e8b2262f9c40CAS |

[19]  J. Heyrovský, J. Kuta, Principles of Polarography 1966 (Academic Press: New York).

[20]  Z. Zhang, J. Buffle, H. P. van Leeuwen, Roles of dynamic metal speciation and membrane permeabiity in metal flux through lipophilic membranes: general theory and experimental validation with nonlabile complexes. Langmuir 2007, 23, 5216.
Roles of dynamic metal speciation and membrane permeabiity in metal flux through lipophilic membranes: general theory and experimental validation with nonlabile complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsV2lsbw%3D&md5=f2edd515d2f0c5f2091f7dc94f571ab7CAS | 17391055PubMed |

[21]  J. Puy, J. Cecília, J. Galceran, R. M. Town, H. P. van Leeuwen, Voltammetric lability of multiligand complexes: the case of ML2. J. Electroanal. Chem. 2004, 571, 121.
Voltammetric lability of multiligand complexes: the case of ML2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Kitb8%3D&md5=f8224d3606bf98ff874ca9a985fa7cc0CAS |

[22]  J. D. Ritchie, E. M. Perdue, Proton-binding study of standard and reference fulvic acid, humic acids, and natural organic matter. Geochim. Cosmochim. Acta 2003, 67, 85.
Proton-binding study of standard and reference fulvic acid, humic acids, and natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsV2ktLY%3D&md5=25699e5405a56caa85e525ff432179f1CAS |

[23]  M. J. Avena, L. K. Koopal, W. H. van Riemsdijk, Proton binding to humic acids: electrostatic and intrinsic interactions. J. Colloid Interface Sci. 1999, 217, 37.
Proton binding to humic acids: electrostatic and intrinsic interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVaht7s%3D&md5=1e4530020614f62512052817050d4e58CAS | 10441409PubMed |

[24]  J. N. Israelachvili, Intermolecular and Surface Forces, 3rd edn 2011 (Elsevier: Amsterdam).

[25]  E. J. Smith, W. Davison, J. Hamilton-Taylor, Methods for preparing synthetic freshwaters. Water Res. 2002, 36, 1286.
Methods for preparing synthetic freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVSntw%3D%3D&md5=492d91e4e645781de5413d6ceec0403bCAS | 11902783PubMed |

[26]  N. Kloster, M. Brigante, G. Zanini, M. Avena, Aggregation kinetics of humic acids in the presence of calcium ions. Colloids Surf. A. Physicochem. Eng. Aspects 2013, 427, 76.
Aggregation kinetics of humic acids in the presence of calcium ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsleqtLs%3D&md5=c1773268eea5de694c4e61b0c35c7e6aCAS |

[27]  R. M. Town, H. P. van Leeuwen, Fundamental features of metal ion determination by stripping chronopotentiometry. J. Electroanal. Chem. 2001, 509, 58.
Fundamental features of metal ion determination by stripping chronopotentiometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFOhsrw%3D&md5=18d48865ff70411b808473bb14255cc0CAS |

[28]  H. P. van Leeuwen, R. M. Town, Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential. Environ. Sci. Technol. 2003, 37, 3945.
Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1ehtbg%3D&md5=1d62f014038244b92b5ea4351ab5b450CAS | 12967117PubMed |

[29]  R. F. M. J. Cleven, H. P. van Leeuwen, Electrochemical analysis of the heavy metal/humic acid interaction. Int. J. Environ. Anal. Chem. 1986, 27, 11.
Electrochemical analysis of the heavy metal/humic acid interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXptFek&md5=ec7d706317ea579577a36d0d766e8534CAS |

[30]  J. P. Pinheiro, A. M. Mota, M. L. S. S. Gonçalves, H. P. van Leeuwen, The pH effect in the diffusion coefficient of humic matter: influence in speciation studies using voltammetric techniques. Colloids Surf. A 1998, 137, 165.
The pH effect in the diffusion coefficient of humic matter: influence in speciation studies using voltammetric techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFOisbg%3D&md5=1167645ba51b0c59faecd06a376fe643CAS |

[31]  J. R. Lead, K. Starchev, K. J. Wilkinson, Diffusion coefficients of humic substances in agarose gel and in water. Environ. Sci. Technol. 2003, 37, 482.
Diffusion coefficients of humic substances in agarose gel and in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlKn&md5=59ff2b9b891ada21d41d9091aa6e2852CAS | 12630462PubMed |

[32]  M. O. von Stackelberg, M. Pilgram, V. Toome, Bestimmung von Diffusionskoeffizienten einiger Ionen in wäßriger Lösung in Gegenwart von Fremdelektrolyten. I. Z. Elektrochem. 1953, 57, 342.

[33]  J. Buffle, M.-L. Tercier-Waeber, In situ voltammetry: concepts and practice for trace analysis and speciation, in In Situ Monitoring of Aquatic Systems. Chemical Analysis and Speciation (Eds J. Buffle, G. Horvai) 2000, pp. 279–405 (Wiley: Chichester, UK).

[34]  J. Buffle, R. S. Altmann, M. Filella, Effect of physic-chemical heterogeneity of natural complexants: Part II. Buffering action and role of their background sites. Anal. Chim. Acta 1990, 232, 225.
Effect of physic-chemical heterogeneity of natural complexants: Part II. Buffering action and role of their background sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFKls7o%3D&md5=370040db3a23097a87efdb63bf658be4CAS |

[35]  J. Buffle, Complexation Reactions in Aquatic Systems: an Analytical Approach 1988 (Ellis Horwood: Chichester, UK).

[36]  R. M. Town, H. P. van Leeuwen, J. Buffle, Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids. Environ. Sci. Technol. 2012, 46, 10 487.
Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1OksL7F&md5=73f78e1fee58adfcc6d4c60ca0b94c1aCAS |

[37]  R. S. Altmann, J. Buffle, The use of differential equilibrium functions for interpretation of metal binding in complex ligand systems: its relation to site occupation and site affinity distributions. Geochim. Cosmochim. Acta 1988, 52, 1505.
The use of differential equilibrium functions for interpretation of metal binding in complex ligand systems: its relation to site occupation and site affinity distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltFOis7w%3D&md5=31ee4ac7e83bd213cffe750a284bf52dCAS |

[38]  M. Filella, J. Buffle, H. P. van Leeuwen, Effect of physicochemical heterogeneity of natural complexants. Part I. Voltammetry of labile metal-fulvic complexes. Anal. Chim. Acta 1990, 232, 209.
Effect of physicochemical heterogeneity of natural complexants. Part I. Voltammetry of labile metal-fulvic complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFKls70%3D&md5=33e751f57f820d75fd00d27267fd2f4aCAS |

[39]  I. Christl, Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids. Environ. Chem. 2012, 9, 89.
Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtLc%3D&md5=7b595ec08562b3052022c967db195296CAS |

[40]  J. G. Hering, F. M. M. Morel, Humic acid complexation of calcium and copper. Environ. Sci. Technol. 1988, 22, 1234.
Humic acid complexation of calcium and copper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltlCmsbo%3D&md5=42e1140ffc57b973bd0194e701f7050dCAS | 22148621PubMed |

[41]  F. M. M. Morel, J. G. Hering, Principles and Applications of Aquatic Chemistry 1993 (Wiley: New York).

[42]  R. F. M. J. Cleven, Heavy Metal/Polyacid Interaction 1984, PhD thesis, Agricultural University Wageningen.

[43]  C. David, E. Companys, J. Galceran, J. L. Garcés, F. Mas, C. Rey-Castro, J. Salvador, J. Puy, Competitive ion complexation to polyelectrolytes: determination of the stepwise stability constants. The Ca2+/H+/polyacrylate system. J. Phys. Chem. B 2007, 111, 10 421.
Competitive ion complexation to polyelectrolytes: determination of the stepwise stability constants. The Ca2+/H+/polyacrylate system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovF2lsrk%3D&md5=9dbbd632342ad8e1325874bb2ac804b2CAS |

[44]  I. Christl, C. J. Milne, D. G. Kinniburgh, R. Kretzschmar, Relating ion binding by fulvic and humic acids to chemical composition and molecular size. Environ. Sci. Technol. 2001, 35, 2512.
Relating ion binding by fulvic and humic acids to chemical composition and molecular size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlClu7k%3D&md5=07edaae588bbdd083c9200e2e4d05715CAS | 11432556PubMed |

[45]  J. Puy, J. Galceran, C. Huidobro, E. Companys, N. Samper, J. L. Garcés, F. Mas, Conditional affinity spectra of Pb2+-humic acid complexation from data obtained with AGNES. Environ. Sci. Technol. 2008, 42, 9289.
Conditional affinity spectra of Pb2+-humic acid complexation from data obtained with AGNES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKqtLjI&md5=fb56c738b6069849c1c73b070664dcf2CAS | 19174906PubMed |

[46]  J. Xiong, L. K. Koopal, W. Tan, L. Fang, M. Wang, W. Zhao, F. Liu, J. Zhang, L. Weng, Lead binding to soil fulvic and humic acids: NICA–Donnan modeling and XAFS spectroscopy. Environ. Sci. Technol. 2013, 47, 11 634.
Lead binding to soil fulvic and humic acids: NICA–Donnan modeling and XAFS spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCmu7rP&md5=8115050134a2a8dd07e3a72bf88a6343CAS |

[47]  D. Gondar, R. López, S. Fiol, J. M. Antelo, F. Arce, Cadmium, lead, and copper binding to humic acid and fulvic acid extracted from an ombrotrophic peat bog. Geoderma 2006, 135, 196.
Cadmium, lead, and copper binding to humic acid and fulvic acid extracted from an ombrotrophic peat bog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVykt7rP&md5=7a9020f914f7c7368a0eb01e30ab5477CAS |

[48]  R. Poupko, Z. Luz, ESR and NMR in aqueous and methanol solutions of copper(II) solvates. Temperature and magnetic field dependence of electron and nuclear spin relaxation. J. Chem. Phys. 1972, 57, 3311.
ESR and NMR in aqueous and methanol solutions of copper(II) solvates. Temperature and magnetic field dependence of electron and nuclear spin relaxation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlsFKqtrg%3D&md5=57a8c731af5b5b7ad001e225812edd5aCAS |

[49]  L. S. W. L. Sokol, T. D. Fink, D. B. Rorabacher, Kinetics of inner-sphere solvent exchange on the aquocopper(II) ion: indirect determination from kinetics of copper(II) reacting with ammonia in aqueous solution. Inorg. Chem. 1980, 19, 1263.
Kinetics of inner-sphere solvent exchange on the aquocopper(II) ion: indirect determination from kinetics of copper(II) reacting with ammonia in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitVCitbs%3D&md5=5a4078f52cef0b00ddc725c98c09b1d3CAS |

[50]  D. H. Powell, L. Helm, A. E. Merbach, 17O nuclear magnetic resonance in aqueous solutions of Cu2+: the combined effect of Jahn-Teller inversion and solvent exchange on relaxation rates. J. Chem. Phys. 1991, 95, 9258.
17O nuclear magnetic resonance in aqueous solutions of Cu2+: the combined effect of Jahn-Teller inversion and solvent exchange on relaxation rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xpsl2huw%3D%3D&md5=544fe83b51274917581352609bc757b5CAS |

[51]  W. B. Lewis, M. Alei, Magnetic resonance studies on copper(II) complex ions in solution. I. Temperature dependences of the 17O NMR and copper(II) EPR linewidths of Cu(H2O)62+. J. Chem. Phys. 1966, 44, 2409.
Magnetic resonance studies on copper(II) complex ions in solution. I. Temperature dependences of the 17O NMR and copper(II) EPR linewidths of Cu(H2O)62+.Crossref | GoogleScholarGoogle Scholar |

[52]  M. Fujii, A. L. Rose, T. D. Waite, T. Omura, Effect of divalent cations on the kinetics of Fe(III) complexation by organic ligands in natural waters. Geochim. Cosmochim. Acta 2009, 72, 1335.. [Published online early March 2008]
Effect of divalent cations on the kinetics of Fe(III) complexation by organic ligands in natural waters.Crossref | GoogleScholarGoogle Scholar |

[53]  R. J. K. Dunn, P. R. Teasdale, J. Warnken, M. A. Jordan, J. M. Arthur, Evaluation of the in situ, time-integrated DGT technique by monitoring changes in heavy metal concentrations in estuarine waters. Environ. Pollut. 2007, 148, 213.
Evaluation of the in situ, time-integrated DGT technique by monitoring changes in heavy metal concentrations in estuarine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Chtr4%3D&md5=baae19bc000d028619aa9dc186e53ef4CAS |

[54]  N. Montero, M. J. Belzunce-Segarra, J.-L. Gonzalez, J. Laretta, J. Franco, Evaluation of diffusive gradients in thin-films (DGTs) as a monitoring tool for the assessment of the chemical status of transitional waters within the Water Framework Directive. Mar. Pollut. Bull. 2012, 64, 31.
Evaluation of diffusive gradients in thin-films (DGTs) as a monitoring tool for the assessment of the chemical status of transitional waters within the Water Framework Directive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Chsr3J&md5=f10c6dd5c0500719fe81e6b764f9b13fCAS | 22099960PubMed |

[55]  W. Davison, H. Zhang, Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics. Environ. Chem. 2012, 9, 1.
Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtbs%3D&md5=9a2cd144d20e8df121dca13aeb1b582fCAS |

[56]  L. Sigg, F. Black, J. Buffle, J. Cao, R. Cleven, W. Davison, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, M. Marten, S. Noël, Y. Nur, N. Odzak, J. Puy, W. van Riemsdijk, E. Temminghoff, M.-L. Tercier-Waeber, S. Toepperwien, R. M. Town, E. Unsworth, K. Warnken, L. Weng, H. Xue, H. Zhang, Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ. Sci. Technol. 2006, 40, 1934.
Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yhsLk%3D&md5=d5016d472512f001bdd15dec070ccd7aCAS | 16570618PubMed |

[57]  R. M. Town, H. P. van Leeuwen, Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 2. Determination of metal ion speciation parameters. J. Electroanal. Chem. 2003, 541, 51.
Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 2. Determination of metal ion speciation parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1GgtA%3D%3D&md5=a2bebf97992e2a6b0a7dfd2ee14da869CAS |