Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Current status and future direction for examining engineered nanoparticles in natural systems

Manuel D. Montaño A F , Gregory V. Lowry B C , Frank von der Kammer D , Julie Blue E and James F. Ranville A
+ Author Affiliations
- Author Affiliations

A Colorado School of Mines, Department of Chemistry and Geochemistry, 1012 14th Street, Golden, CO 80401, USA.

B Carnegie Mellon University, Department of Civil and Environmental Engineering, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.

C Center for Environmental Implications of Nanotechnology, 1201 Hamburg Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.

D University of Vienna, Department of Environmental Geosciences, Althanstrasse 14 UZAII, A-1090 Vienna, Austria.

E The Cadmus Group, Inc., 100 Fifth Avenue, Suite 100, Waltham, MA 02451-8727, USA.

F Corresponding author. Email: jranvill@mines.edu




Manuel D. Montaño is a graduate student at the Colorado School of Mines earning a Ph.D. in Applied Chemistry. His current work focuses on developing techniques and methodology for the detection and characterisation of engineered nanomaterials in environmental samples, in particular utilising single particle inductively coupled plasma–mass spectrometry (ICP-MS) for analysis of ENPs in complex matrices. His previous work has included the examination of phytoremediation of heavy metals in wetland systems affected by acid mine drainage, heteroaggregation of engineered nanomaterials with naturally occurring nanoparticles and the development of single particle ICP-MS using microsecond dwell times for the purpose of environmental analysis of engineered nanomaterials.



Dr Gregory V. Lowry is a Professor of Environmental Engineering in the Department of Civil and Environmental Engineering at Carnegie Mellon University, Pittsburgh, PA. He is also Deputy Director of the National Science Foundation (NSF) and Environmental Protection Agency (EPA) Center for Environmental Implications of Nanotechnology (CEINT). His research and teaching focuses on environmental chemistry and nanotechnology, organic and inorganic aqueous geochemistry, and subsurface processes affecting ground water quality. Dr Lowry's professional interests include: aquatic chemistry, fate and transport of chemicals in surface and subsurface waters, soil and sediment treatment, groundwater remediation, carbon sequestration and environmental issues related to fossil energy. He has published over 90 scientific articles in leading environmental engineering and science journals and 10 related book chapters. He is an associate editor of Environmental Science: Nano (a Royal Society of Chemistry journal) and is currently editing a book on nanoscale iron particles for groundwater remediation.



Dr Frank von der Kammer completed his Ph.D. in 2005 with highest honour at Hamburg University of Technology, in the Department of Environmental Science and Technology. He is currently senior scientist and lecturer, the Head of Nanogeosciences Division and Vice Head of the Department for Environmental Geosciences at the University of Vienna. In the past, Frank has acted as a visiting Professor at the University of Pau and at the University of Aix-Marseille, France. His research interests include environmental colloids, their dynamic behaviour and interaction with trace elements, natural nanoscale processes, nanoparticle characterisation, engineered nanoparticles in the environment and the application of field flow fractionation to characterise nanoparticles in complex samples. He has published more than 50 peer-reviewed papers within both nano research and nanoparticle characterisation.



Dr Julie Blue is Director of Environmental Research at the Cadmus Group, Inc. She has 22 years of experience in environmental research and hydrology, with expertise in groundwater, surface water, drinking water and wastewater. She applies her technical skills in areas such as endocrine-disrupting compounds, emerging wastes and climate change. She leads Cadmus' work on the effects of climate change on water resources. Her expertise includes data analysis and mathematical modelling of contaminant transport. With an M.A. in English, an M.Sc. in Earth Sciences and a Ph.D. in Hydrology, Dr Blue has written extensively for numerous documents in the areas of source water protection, water quality and climate change and water resources.



Dr James F. Ranville is a Professor of Geochemistry in the Department of Chemistry and Geochemistry at the Colorado School of Mines. His research interests include environmental colloids, bioavailability and toxicity of trace metals and environmental nanometrology, specifically the development and the application of inductively coupled plasma–mass spectrometry and field flow fractionation to characterise nanoparticles in complex samples. He has published more than 60 peer-reviewed papers on the topics of aqueous geochemistry, nanoparticle research, and aquatic toxicology.

Environmental Chemistry 11(4) 351-366 https://doi.org/10.1071/EN14037
Submitted: 19 February 2014  Accepted: 7 May 2014   Published: 28 July 2014

Environmental context. The detection and characterisation of engineered nanomaterials in the environment is essential for exposure and risk assessment for this emerging class of materials. However, the ubiquitous presence of naturally occurring nanomaterials presents a unique challenge for the accurate determination of engineered nanomaterials in environmental matrices. New techniques and methodologies are being developed to overcome some of these issues by taking advantage of subtle differences in the elemental and isotopic ratios within these nanomaterials.

Abstract. The increasing manufacture and implementation of engineered nanomaterials (ENMs) will continue to lead to the release of these materials into the environment. Reliably assessing the environmental exposure risk of ENMs will depend highly on the ability to quantify and characterise these materials in environmental samples. However, performing these measurements is obstructed by the complexity of environmental sample matrices, physiochemical processes altering the state of the ENM and the high background of naturally occurring nanoparticles (NNPs), which may be similar in size, shape and composition to their engineered analogues. Current analytical techniques can be implemented to overcome some of these obstacles, but the ubiquity of NNPs presents a unique challenge requiring the exploitation of properties that discriminate engineered and natural nanomaterials. To this end, new techniques are being developed that take advantage of the nature of ENMs to discern them from naturally occurring analogues. This paper reviews the current techniques utilised in the detection and characterisation of ENMs in environmental samples as well as discusses promising new approaches to overcome the high backgrounds of NNPs. Despite their occurrence in the atmosphere and soil, this review will be limited to a discussion of aqueous-based samples containing ENMs, as this environment will serve as a principal medium for the environmental dispersion of ENMs.


References

[1]  M. C. Roco, C. A. Mirkin, M. C. Hersam, Nanotechnology research directions for societal needs in 2020: summary of international study. J. Nanopart. Res. 2011, 13, 897.
Nanotechnology research directions for societal needs in 2020: summary of international study.Crossref | GoogleScholarGoogle Scholar |

[2]  M. E. Leitch, E. Casman, G. V. Lowry, Nanotechnology patenting trends through an environmental lens: analysis of materials and applications. J. Nanopart. Res. 2012, 14, 1283.
Nanotechnology patenting trends through an environmental lens: analysis of materials and applications.Crossref | GoogleScholarGoogle Scholar |

[3]  A. Nel, T. Xia, L. Mädler, N. Li, Toxic potential of materials at the nanolevel. Science 2006, 311, 622.
Toxic potential of materials at the nanolevel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVyrsg%3D%3D&md5=07607c278ce7f81713e9974590732786CAS | 16456071PubMed |

[4]  A. Nel, T. Xia, H. Meng, X. Wang, S. Lin, Z. Ji, H. Zhang, Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2013, 46, 607.[Published online early 7 June 2012]
| 1:CAS:528:DC%2BC38Xot1Olt78%3D&md5=f0b0906b481314a2f763ddd3ecdd4180CAS | 22676423PubMed |

[5]  P. Westerhoff, B. Nowack, Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Acc. Chem. Res. 2013, 46, 844.[Published online early 5 September 2012]
Searching for global descriptors of engineered nanomaterial fate and transport in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSksL%2FF&md5=465f77f24ab22f48e3bc8844f500d3a5CAS | 22950943PubMed |

[6]  M. R. Wiesner, J.-Y. Bottero, Environmental nanotechnology, in Applications and Impacts of Nanomaterials 2007, pp. 395–517 (McGraw Hill: New York).

[7]  G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893.
Transformations of nanomaterials in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFajtbs%3D&md5=ffe75c0f5fd3c0eb997ff49828357fb0CAS | 22582927PubMed |

[8]  C. Levard, E. M. Hotze, B. P. Colman, A. L. Dale, L. Truong, X. Y. Yang, A. J. Bone, G. E. Brown, R. L. Tanguay, R. T. Di Giulio, E. S. Bernhardt, J. N. Meyer, M. R. Wiesner, G. V. Lowry, Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ. Sci. Technol. 2013, 47, 13 440.
A. J. Bone, G. E. Brown, R. L. Tanguay, R. T. Di Giulio, E. S. Bernhardt, J. N. Meyer, M. R. Wiesner, G. V. Lowry, Sulfidation of silver nanoparticles: natural antidote to their toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWiu7zN&md5=f5e996e81c502e5ecef9c46100060a3dCAS |

[9]  Committee to Develop a Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials, A research strategy for environmental, health, and safety aspects of engineered nanomaterials 2012 (National Academies Press for the National Research Council).

[10]  A. Pérez-de-Luque, D. Rubiales, Nanotechnology for parasitic plant control. Pest Manag. Sci. 2009, 65, 540.
Nanotechnology for parasitic plant control.Crossref | GoogleScholarGoogle Scholar | 19255973PubMed |

[11]  M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 2006, 40, 4336.
Assessing the risks of manufactured nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFWgsb4%3D&md5=658e5cb90b427a2f73b2955afad59c89CAS | 16903268PubMed |

[12]  M. Kah, T. Hofmann, Nanopesticide research: current trends and future priorities. Environ. Int. 2014, 63, 224.
Nanopesticide research: current trends and future priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWmur3P&md5=0d48af5ee5319da9c29ec9fc98a11cdfCAS | 24333990PubMed |

[13]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
Nanomaterials in the environment: behavior, fate, bioavailability, and effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLjJ&md5=66bb5f70ddef5f791cd00b10e5afac24CAS | 19086204PubMed |

[14]  B. Nowack, T. D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5.
Occurrence, behavior and effects of nanoparticles in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2mt7vJ&md5=af473d55f6b7c16212fec500d5b67048CAS | 17658673PubMed |

[15]  M. N. Moore, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006, 32, 967.
Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCqur3P&md5=7e1b6fe9c9a7d6d8c4a0cc5610a5294cCAS | 16859745PubMed |

[16]  M. F. Hochella, Nanogeoscience: from origins to cutting-edge applications. Elements 2008, 4, 373.
Nanogeoscience: from origins to cutting-edge applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ehtLvI&md5=d06952b73f34284821dd1a3766386d7cCAS |

[17]  M. F. Hochella, S. K. Lower, P. A. Maurice, R. L. Penn, N. Sahai, D. L. Sparks, B. S. Twining, Nanominerals, mineral nanoparticles, and earth systems. Science 2008, 319, 1631.
Nanominerals, mineral nanoparticles, and earth systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVamur8%3D&md5=d65e618a29744d59d6f4ac9df256c140CAS | 18356515PubMed |

[18]  B. J. Majestic, G. B. Erdakos, M. Lewandowski, K. D. Oliver, R. D. Willis, T. E. Kleindienst, P. V. Bhave, A review of selected engineered nanoparticles in the atmosphere: sources, transformations, and techniques for sampling and analysis. Int. J. Occup. Environ. Health 2010, 16, 488.
A review of selected engineered nanoparticles in the atmosphere: sources, transformations, and techniques for sampling and analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOnsL7F&md5=a09663e8b7c364dab52e39a8ba0c3191CAS | 21222392PubMed |

[19]  M. Auffan, J. Rose, J. Bottero, G. Lowry, J. Jolivet, M. Wiesner, Towards a definition of nanoparticles based on novel size-dependent properties. Nat. Nanotechnol. 2009, 4, 634.
Towards a definition of nanoparticles based on novel size-dependent properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1aqsLrE&md5=c9f91565b01cf0e9731b5deef0b8bbc8CAS | 19809453PubMed |

[20]  E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583.
Size matters: why nanomaterials are different.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Gmu7Y%3D&md5=076ac28d5b4f345797e0c237ea81d4b0CAS | 16791330PubMed |

[21]  J.-W. Luo, P. Stradins, A. Zunger, Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors. Energy Env. Sci. 2011, 4, 2546.
Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWrtrvL&md5=5f27b2267e074ecaab7d085a135ea31aCAS |

[22]  T. M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, 4133.
Nanoparticle silver released into water from commercially available sock fabrics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlKjsL4%3D&md5=16dae2000740ddd05f5125241df26259CAS | 18589977PubMed |

[23]  S. A. Blaser, M. Scheringer, M. MacLeod, K. Hungerbühler, Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 2008, 390, 396.
Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOis73I&md5=69c4d3206fe10559bad96c85fdb9616dCAS | 18031795PubMed |

[24]  C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, C. M. Che, Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, 12, 527.
Silver nanoparticles: partial oxidation and antibacterial activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVaitLc%3D&md5=4edecd2af31c043e8d3dcccd68d342feCAS | 17353996PubMed |

[25]  H. R. Jafry, M. V. Liga, Q. Li, A. R. Barron, Simple route to enhanced photocatalytic activity of p25 titanium dioxide nanoparticles by silica addition. Environ. Sci. Technol. 2011, 45, 1563.[Published online early 31 December 2010]
Simple route to enhanced photocatalytic activity of p25 titanium dioxide nanoparticles by silica addition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslek&md5=6dc46b1350e4b20698c7726687fe3895CAS | 21194213PubMed |

[26]  E. Lombi, E. Donner, E. Tavakkoli, T. W. Turney, R. Naidu, B. W. Miller, K. G. Scheckel, K. Vasilev, Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ. Sci. Technol. 2012, 46, 9089.
Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKlt7%2FK&md5=a8ff12f656878e0da34540a48c78cc9fCAS | 22816872PubMed |

[27]  S. E. Cross, B. Innes, M. S. Roberts, T. Tsuzuki, T. A. Robertson, P. McCormick, Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol. 2007, 20, 148.
Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltl2gt7k%3D&md5=2fe7a4d856c4aed506a187b86bc260f5CAS | 17230054PubMed |

[28]  M. J. Osmond, M. J. Mccall, Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 2010, 4, 15.
Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFOmu7k%3D&md5=5733003eec28adfd03961304c9bb59c7CAS | 20795900PubMed |

[29]  B. Park, K. Donaldson, R. Duffin, L. Tran, F. Kelly, I. Mudway, J.-P. Morin, R. Guest, P. Jenkinson, Z. Samaras, Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive – a case study. Inhal. Toxicol. 2008, 20, 547.
Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive – a case study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyns7k%3D&md5=5418bcff2b1611630754713195e78fedCAS | 18444008PubMed |

[30]  V. Sajith, C. Sobhan, G. Peterson, Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Adv. Mech. Eng. 2010, 2010, 581407.
Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel.Crossref | GoogleScholarGoogle Scholar |

[31]  P. V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 2008, 112, 18 737.
Quantum dot solar cells. Semiconductor nanocrystals as light harvesters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kiu77K&md5=80deb151ad0fd8c29a9d9e6afef4caceCAS |

[32]  I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385.
Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslOruw%3D%3D&md5=458b97e2980766bbb09abd0dba387b0cCAS | 16478194PubMed |

[33]  X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538.
Quantum dots for live cells, in vivo imaging, and diagnostics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmslOhtw%3D%3D&md5=4c1621bb5b0ca75c827a6e05f6ec8037CAS | 15681376PubMed |

[34]  J. K. Jaiswal, H. Mattoussi, J. M. Mauro, S. M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2002, 21, 47.
Long-term multiple color imaging of live cells using quantum dot bioconjugates.Crossref | GoogleScholarGoogle Scholar | 12459736PubMed |

[35]  I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435.
Quantum dot bioconjugates for imaging, labelling and sensing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Cit7k%3D&md5=e1b8a1c9d7c30c37f797e3a7070dda8fCAS | 15928695PubMed |

[36]  R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanotubes – the route toward applications. Science 2002, 297, 787.
Carbon nanotubes – the route toward applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVyhsrw%3D&md5=d64b6624fe6f22ecb7aea763fa15692cCAS | 12161643PubMed |

[37]  P. W. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, Device physics of polymer: fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551.
Device physics of polymer: fullerene bulk heterojunction solar cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVagsL4%3D&md5=9337353b3f2068423b9fe4b67bad364dCAS |

[38]  B. C. Thompson, J. M. Fréchet, Polymer–fullerene composite solar cells. Angew. Chem. Int. Ed. 2008, 47, 58.
Polymer–fullerene composite solar cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOrtQ%3D%3D&md5=36fb650aafce261627d19e2694241a6eCAS |

[39]  A. K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995.
Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFWr&md5=e8c2a5d123bd2bf02cf613d5f9a2e0bfCAS | 15626447PubMed |

[40]  A. R. Petosa, D. P. Jaisi, I. R. Quevedo, M. Elimelech, N. Tufenkji, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 2010, 44, 6532.
Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSgt7g%3D&md5=bba98cf747b566481721a2b580709409CAS | 20687602PubMed |

[41]  J. Buffle, H. P. van Leeuwin, Foreword, in Environmental Particles, vol. 1 (Ed. J. Buffle, H. P. van Leeuwin) 1993 (Lewis Publishers: Chelsea, MI, USA).

[42]  F. Gottschalk, T. Sonderer, R. W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216.
Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyhtL%2FP&md5=a8a5454d70978de5af6ee6d145a26961CAS | 20000512PubMed |

[43]  A. A. Keller, A. Lazareva, Predicted releases of engineered nanomaterials: from global to regional to local. Environ. Sci. Technol. Lett 2014, 1, 65.[Published online early 14 October 2013]
Predicted releases of engineered nanomaterials: from global to regional to local.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Sqs73O&md5=6b08907e245ec9a758a6d5e5a5ab31f7CAS |

[44]  A. A. Keller, S. McFerran, A. Lazareva, S. Suh, Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013, 15, 1692.
Global life cycle releases of engineered nanomaterials.Crossref | GoogleScholarGoogle Scholar |

[45]  J. Buffle, G. G. Leppard, Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ. Sci. Technol. 1995, 29, 2169.
Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFKksrs%3D&md5=1ad0a10d15bf6de9a399777fddbb1378CAS | 22280252PubMed |

[46]  B. K. G. Theng, G. Yuan, Nanoparticles in the soil environment. Elements 2008, 4, 395.
Nanoparticles in the soil environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ehtLvL&md5=ec52b1b234bac2b44f2979c7a6489e48CAS |

[47]  J. F. Banfield, H. Zhang, Nanoparticles in the environment. Rev. Mineral. Geochem. 2001, 44, 1.
Nanoparticles in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlSntrw%3D&md5=698178a0200627168ba0b3c03e8b798aCAS |

[48]  M. Taha, O. Taha, Influence of nano-material on the expansive and shrinkage soil behavior. J. Nanopart. Res. 2012, 14, 1190.
Influence of nano-material on the expansive and shrinkage soil behavior.Crossref | GoogleScholarGoogle Scholar |

[49]  S. Diegoli, A. L. Manciulea, S. Begum, I. P. Jones, J. R. Lead, J. A. Preece, Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total Environ. 2008, 402, 51.
Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Kqu7s%3D&md5=31a7a5255c4b927ecbd5000fe0114b44CAS | 18534664PubMed |

[50]  D. P. Stankus, S. E. Lohse, J. E. Hutchison, J. A. Nason, Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ. Sci. Technol. 2011, 45, 3238.[Published online early 16 December 2010]
Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOqtr%2FF&md5=014ab5a691d217b2dc68d683d4946eedCAS | 21162562PubMed |

[51]  P. D. Yates, G. V. Franks, S. Biggs, G. J. Jameson, Heteroaggregation with nanoparticles: effect of particle size ratio on optimum particle dose. Colloids Surf. A Physicochem. Eng. Asp. 2005, 255, 85.
Heteroaggregation with nanoparticles: effect of particle size ratio on optimum particle dose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVGms7s%3D&md5=2cf2be9c6f73983e2efa88d23efc3018CAS |

[52]  P. D. Yates, G. V. Franks, G. J. Jameson, Orthokinetic heteroaggregation with nanoparticles: effect of particle size ratio on aggregate properties. Colloids Surf. A Physicochem. Eng. Asp. 2008, 326, 83.
Orthokinetic heteroaggregation with nanoparticles: effect of particle size ratio on aggregate properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1elsb4%3D&md5=d88cdc4c53f19a16254196c21565c6faCAS |

[53]  P. Garcia-Perez, C. Pagnoux, F. Rossignol, J.-F. Baumard, Heterocoagulation between sio2 nanoparticles and al2o3 submicronparticles; influence of the background electrolyte. Colloids Surf. A Physicochem. Eng. Asp. 2006, 281, 58.
Heterocoagulation between sio2 nanoparticles and al2o3 submicronparticles; influence of the background electrolyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFCkt70%3D&md5=40373e41df48e659a6ac2d60bbbf28a2CAS |

[54]  S. M. Louie, R. D. Tilton, G. V. Lowry, Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environ. Sci. Technol. 2013, 47, 4245.
Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltFCjtb8%3D&md5=15bb87cd98587338b45001fe740f319eCAS | 23550560PubMed |

[55]  E. M. Hotze, T. Phenrat, G. V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909.
Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKlu7zI&md5=920b07f4a5df0e8b01da1337ad4a5016CAS | 21284288PubMed |

[56]  C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
Environmental transformations of silver nanoparticles: impact on stability and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=4dae6e02caa0d9ab4a861e91882a1b9dCAS | 22339502PubMed |

[57]  C. Levard, S. Mitra, T. Yang, A. D. Jew, A. R. Badireddy, G. V. Lowry, G. E. Brown, Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, 5738.
Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvF2js70%3D&md5=360a91aa4aabb8a8673bba0553a874dcCAS | 23641814PubMed |

[58]  C. Levard, B. C. Reinsch, F. M. Michel, C. Oumahi, G. V. Lowry, G. E. Brown, Sulfidation processes of pvp-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, 5260.
Sulfidation processes of pvp-coated silver nanoparticles in aqueous solution: impact on dissolution rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlCkuro%3D&md5=78a71476ddabcc48bd33cb3b00909833CAS | 21598969PubMed |

[59]  J. G. Darab, A. B. Amonette, D. S. D. Burke, R. D. Orr, S. M. Ponder, B. Schrick, T. E. Mallouk, W. W. Lukens, D. L. Caulder, D. K. Shuh, Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron. Chem. Mater. 2007, 19, 5703.
Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2jtbzK&md5=e8875e2b5073688faad7f3590b1f11efCAS |

[60]  B. C. Reinsch, B. Forsberg, R. L. Penn, C. S. Kim, G. V. Lowry, Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ. Sci. Technol. 2010, 44, 3455.
Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVKlu7w%3D&md5=b649df551525855029193c697c576f41CAS | 20380376PubMed |

[61]  M. Baalousha, P. Le Coustumer, I. Jones, J. R. Lead, Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles. Environ. Chem. 2010, 7, 377.
Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12jsbzI&md5=0b1b642f638cb0089792dcbf0106a067CAS |

[62]  Y. Liu, S. A. Majetich, R. D. Tilton, D. S. Sholl, G. V. Lowry, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 2005, 39, 1338.
TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovVeg&md5=afa3877f2a3c037e97d11d12aa7aa639CAS | 15787375PubMed |

[63]  A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11.
Probing the cytotoxicity of semiconductor quantum dots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1SmtLo%3D&md5=a8f51446a4efc2513e69e5d4df82468dCAS |

[64]  C. Noubactep, S. Caré, R. Crane, Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut. 2012, 223, 1363.
Nanoscale metallic iron for environmental remediation: prospects and limitations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1OnsLk%3D&md5=3e636f46d38b4c9699bcc00309694f89CAS | 22389536PubMed |

[65]  W. C. Hou, C. T. Jafvert, Photochemical transformation of aqueous C60 clusters in sunlight. Environ. Sci. Technol. 2009, 43, 362.
Photochemical transformation of aqueous C60 clusters in sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFaisrnE&md5=27363eb320ead3ff07f947d92c6b266fCAS | 19238965PubMed |

[66]  H.-J. Kim, T. Phenrat, R. D. Tilton, G. V. Lowry, Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ. Sci. Technol. 2009, 43, 3824.
Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslOksrs%3D&md5=697a14a5e2c88fb0832d5790cac36510CAS | 19544894PubMed |

[67]  M. P. Monopoli, D. Walczyk, A. Campbell, G. Elia, I. Lynch, F. Baldelli Bombelli, K. A. Dawson, Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525.
Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOnt7w%3D&md5=84d9baed4322c44b74ebe097e665d3afCAS | 21288025PubMed |

[68]  Y. Cheng, L. Yin, S. Lin, M. Wiesner, E. Bernhardt, J. Liu, Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J. Phys. Chem. C 2011, 115, 4425.
Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1akt7c%3D&md5=32dd03e52a97b8e8247f733db99b86adCAS |

[69]  N. Fauconnier, J. Pons, J. Roger, A. Bee, Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J. Colloid Interface Sci. 1997, 194, 427.
Thiolation of maghemite nanoparticles by dimercaptosuccinic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVOmtbw%3D&md5=ec76abdf3913b841c5175ba2e3c27ee9CAS | 9398425PubMed |

[70]  J. Lee, N. M. Donahue, Secondary organic aerosol coating of synthetic metal-oxide nanoparticles. Environ. Sci. Technol. 2011, 45, 4689.
Secondary organic aerosol coating of synthetic metal-oxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVeqs7s%3D&md5=bbb2b933f8a6fd0ad7573ebd7094fb72CAS | 21534558PubMed |

[71]  T. Cedervall, I. Lynch, S. Lindman, T. Berggård, E. Thulin, H. Nilsson, K. A. Dawson, S. Linse, Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050.
Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVWrsro%3D&md5=c875dac5258f37232c25b0c73d6df947CAS | 17267609PubMed |

[72]  D. C. Sobeck, M. J. Higgins, Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 2002, 36, 527.
Examination of three theories for mechanisms of cation-induced bioflocculation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFCnt74%3D&md5=6f7ecdc1681858ea26a3a37ad051a794CAS | 11827315PubMed |

[73]  N. Maximova, O. Dahl, Environmental implications of aggregation phenomena: current understanding. Curr. Opin. Colloid Interface Sci. 2006, 11, 246.
Environmental implications of aggregation phenomena: current understanding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WltLfJ&md5=b4340dcc4bdfa51d8d21ad1e57249981CAS |

[74]  M. Noh, T. Kim, H. Lee, C.-K. Kim, S.-W. Joo, K. Lee, Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots. Colloids Surf. A Physicochem. Eng. Asp. 2010, 359, 39.
Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivV2ju74%3D&md5=cf900162943a13e9f133a66ae8de5768CAS |

[75]  M. Cerbelaud, A. Videcoq, P. Abelard, C. Pagnoux, F. Rossignol, R. Ferrando, Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: experiment and simulation. Langmuir 2008, 24, 3001.
Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: experiment and simulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFyit7g%3D&md5=d074c2342592d26190191b5601ff305eCAS | 18312002PubMed |

[76]  M. Baalousha, A. Manciulea, S. Cumberland, K. Kendall, J. R. Lead, Aggregation and surface properties of iron oxide nanoparticles: influence of ph and natural organic matter. Environ. Toxicol. Chem. 2008, 27, 1875.
Aggregation and surface properties of iron oxide nanoparticles: influence of ph and natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLjF&md5=7498511e79e4766c4437605b0d56535eCAS | 19086206PubMed |

[77]  J. Lebowitz, M. S. Lewis, P. Schuck, Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 2002, 11, 2067.
Modern analytical ultracentrifugation in protein science: a tutorial review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslCjurg%3D&md5=29af2ee70030af82975dff65959c3575CAS | 12192063PubMed |

[78]  D. Zhou, A. I. Abdel-Fattah, A. A. Keller, Clay particles destabilize engineered nanoparticles in aqueous environments. Environ. Sci. Technol. 2012, 46, 7520.
Clay particles destabilize engineered nanoparticles in aqueous environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFartLc%3D&md5=680f74b56d6469de2d8b53372f676aa3CAS | 22721423PubMed |

[79]  F. von der Kammer, S. Legros, T. Hofmann, E. H. Larsen, K. Loeschner, Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TRAC – Trends Analyt. Chem. 2011, 30, 425.
Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFals78%3D&md5=c8f3c6b484fbcf4fd394ded56c980211CAS |

[80]  C. W. Isaacson, D. Bouchard, Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry. J. Chromatogr. A 2010, 1217, 1506.
Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWmsb0%3D&md5=f3d172adfe7f6c86a23e5eb0b8f2f212CAS | 20070969PubMed |

[81]  H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, E. P. Gray, C. P. Higgins, J. F. Ranville, Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ. Sci. Technol. 2012, 46, 12 272.
Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFehu7g%3D&md5=2c959666a930cc02c7505c4a3ade3decCAS |

[82]  R. D. Boyd, S. K. Pichaimuthu, A. Cuenat, New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering. Colloids Surf. A Physicochem. Eng. Asp. 2011, 387, 35.
New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFansb%2FF&md5=62a4567be16b7e546cb01026ee71b66bCAS |

[83]  J. Farkas, H. Peter, P. Christian, J. A. Gallego Urrea, M. Hassellöv, J. Tuoriniemi, S. Gustafsson, E. Olsson, K. Hylland, K. V. Thomas, Characterization of the effluent from a nanosilver producing washing machine. Environ. Int. 2011, 37, 1057.
Characterization of the effluent from a nanosilver producing washing machine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWnurw%3D&md5=158e4099940f073c32204426d4030ca5CAS | 21470683PubMed |

[84]  N. Akaighe, R. I. MacCuspie, D. A. Navarro, D. S. Aga, S. Banerjee, M. Sohn, V. K. Sharma, Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ. Sci. Technol. 2011, 45, 3895.
Humic acid-induced silver nanoparticle formation under environmentally relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFSrtbg%3D&md5=baec7aaa4e234739dc716a69b34731dcCAS | 21456573PubMed |

[85]  K. Tiede, S. P. Tear, H. David, A. B. A. Boxall, Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res. 2009, 43, 3335.
Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslGqsrg%3D&md5=f0b4aa3310d3d89fb14cda556dbe202bCAS | 19501872PubMed |

[86]  M. Nadler, T. Mahrholz, U. Riedel, C. Schilde, A. Kwade, Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge. Carbon 2008, 46, 1384.
Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFyht7c%3D&md5=06dc9a89e43e522ff46979e7178a6c67CAS |

[87]  A. Neumann, W. Hoyer, M. Wolff, U. Reichl, A. Pfitzner, B. Roth, New method for density determination of nanoparticles using a CPS disc centrifuge. Colloids Surf. B Biointerfaces 2013, 104, 27.
New method for density determination of nanoparticles using a CPS disc centrifuge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtFSqsL0%3D&md5=ffc2c7b50594aacf60c0f2e641928910CAS | 23298584PubMed |

[88]  A. R. Poda, A. J. Bednar, A. J. Kennedy, A. Harmon, M. Hull, D. M. Mitrano, J. F. Ranville, J. Steevens, Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J. Chromatogr. A 2011, 1218, 4219.
Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKgurY%3D&md5=d6cd8a0b645494d4ee347a445a1557a5CAS | 21247580PubMed |

[89]  E. K. Lesher, J. F. Ranville, B. D. Honeyman, Analysis of ph dependent uranium(VI) sorption to nanoparticulate hematite by flow field-flow fractionation – inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 2009, 43, 5403.
Analysis of ph dependent uranium(VI) sorption to nanoparticulate hematite by flow field-flow fractionation – inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Sjtb8%3D&md5=281183837dc8f4cf03e6fdaa713c4dbaCAS | 19708373PubMed |

[90]  M. Baalousha, B. Stolpe, J. R. Lead, Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J. Chromatogr. A 2011, 1218, 4078.
Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKgtb0%3D&md5=180bc54d1c6821e40997d95296f54049CAS | 21621214PubMed |

[91]  E. P. Gray, T. A. Bruton, C. P. Higgins, R. U. Halden, P. Westerhoff, J. F. Ranville, Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1532.
Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOnu77O&md5=8d8f2ca8e84ec08d5b7d9d4b0dfff658CAS |

[92]  R. B. Reed, D. G. Goodwin, K. L. Marsh, S. S. Capracotta, C. P. Higgins, D. H. Fairbrother, J. F. Ranville, Detection of single walled carbon nanotubes by monitoring embedded metals. Environ. Sci. Proc. Impacts 2013, 15, 204. [Published online early 7 December 2012]
Detection of single walled carbon nanotubes by monitoring embedded metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFWgt7rN&md5=cfe1d3d64e856b2d1d8d2b36f9815aa5CAS |

[93]  R. B. Reed, C. P. Higgins, P. Westerhoff, S. Tadjiki, J. F. Ranville, Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2012, 27, 1093.
Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFSksrk%3D&md5=ee7a7e1d7322123b3822463f88f0b02fCAS |

[94]  D. M. Mitrano, E. K. Lesher, A. Bednar, J. Monserud, C. P. Higgins, J. F. Ranville, Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry. Environ. Toxicol. Chem. 2012, 31, 115.
Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yktr7E&md5=9234fb3e71b09355b5b281b35d380b3dCAS | 22012920PubMed |

[95]  F. Laborda, J. Jimenez-Lamana, E. Bolea, J. R. Castillo, Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom. 2011, 26, 1362.
Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVaqtro%3D&md5=573f705c12ca8eb90989c17d60dc11d3CAS |

[96]  E. P. Gray, J. G. Coleman, A. J. Bednar, A. J. Kennedy, J. F. Ranville, C. P. Higgins, Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 2013, 47, 14 315.
Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKks7%2FO&md5=1f1decc939e7733264458b1ab0d4c851CAS |

[97]  H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins, J. F. Ranville, Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 2011, 83, 9361.
Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCrsLvO&md5=d3106fbeaa0633f88e64814967a64db4CAS | 22074486PubMed |

[98]  J.-f. Liu, Z.-s. Zhao, G.-b. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 2008, 42, 6949.
Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVSisLw%3D&md5=55c28ff3759c6413a25dfb29dc527080CAS | 18853814PubMed |

[99]  Q. Chen, D. Yin, S. Zhu, X. Hu, Adsorption of cadmium(II) on humic acid coated titanium dioxide. J. Colloid Interface Sci. 2012, 367, 241.
Adsorption of cadmium(II) on humic acid coated titanium dioxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2ltb7E&md5=dece56939e2e42a16d1d151954327169CAS | 22047914PubMed |

[100]  L. Liang, L. Luo, S. Zhang, Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 126.
Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlKht7o%3D&md5=5556129a60200a2b22a3c186b833b58eCAS |

[101]  R. Ma, C. Levard, F. M. Michel, G. E. Brown, G. V. Lowry, Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environ. Sci. Technol. 2013, 47, 2527.
Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFaluro%3D&md5=a6561168a9d878dff40dc15ce258a2bfCAS | 23425191PubMed |

[102]  E. Lombi, E. Donner, S. Taheri, E. Tavakkoli, Å. K. Jämting, S. McClure, R. Naidu, B. W. Miller, K. G. Scheckel, K. Vasilev, Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ. Pollut. 2013, 176, 193.
Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFaitbw%3D&md5=b6cc5b33e4c262f5c9fb227482dcae62CAS | 23434771PubMed |

[103]  G. V. Lowry, B. P. Espinasse, A. R. Badireddy, C. J. Richardson, B. C. Reinsch, L. D. Bryant, A. J. Bone, A. Deonarine, S. Chae, M. Therezien, B. P. Colman, H. Hsu-Kim, E. S. Bernhardt, C. W. Matson, M. R. Wiesner, Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 2012, 46, 7027.
Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVyqtbk%3D&md5=0fc37e2708edc8dea008fa6870a70b80CAS | 22463850PubMed |

[104]  C. O. Dimkpa, J. E. McLean, D. E. Latta, E. Manangón, D. W. Britt, W. P. Johnson, M. I. Boyanov, A. J. Anderson, CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res. 2012, 14, 1125.
CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat.Crossref | GoogleScholarGoogle Scholar |

[105]  A. D. Servin, H. Castillo-Michel, J. A. Hernandez-Viezcas, B. C. Diaz, J. R. Peralta-Videa, J. L. Gardea-Torresdey, Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of tio2 nanoparticles in cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 2012, 46, 7637.
Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of tio2 nanoparticles in cucumber (Cucumis sativus) plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovVyhurg%3D&md5=68cceacb9677378508072d0315111ff4CAS | 22715806PubMed |

[106]  F. von der Kammer, P. L. Ferguson, P. A. Holden, A. Masion, K. R. Rogers, S. J. Klaine, A. A. Koelmans, N. Horne, J. M. Unrine, Analysis of engineered nanomterials in complex matrices (environment and biota): fgeneral considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32.
Analysis of engineered nanomterials in complex matrices (environment and biota): fgeneral considerations and conceptual case studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbfF&md5=2c389671872187661fdedaf142521bfcCAS | 22021021PubMed |

[107]  R. Saliminen, Geochemical Atlas of Europe Part 1 – Background information, methodology and maps 2005. Available at http://www.gtk.fi/publ/foregsatlas/ [Verified 20 December 2013].

[108]  J. W. Olesik, P. J. Gray, Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle. J. Anal. At. Spectrom. 2012, 27, 1143.
Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFSksrc%3D&md5=4e98ca7d7d5f97b73f224cbeff529c77CAS |

[109]  M. D. Montaño, H. R. Badiei, S. Bazargan, J. F. Ranville, Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Environ. Sci.: Nano. 2014, 1, 338.
Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times.Crossref | GoogleScholarGoogle Scholar |

[110]  T. J. Shaw, R. Raiswell, C. R. Hexel, H. P. Vu, W. S. Moore, R. Dudgeon, K. L. Smith, Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1376.
Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVWktrk%3D&md5=514d05f90e0c1cc2eafdd6e1049ca92eCAS |

[111]  K. L. Chen, S. E. Mylon, M. Elimelech, Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ. Sci. Technol. 2006, 40, 1516.
Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVGhtA%3D%3D&md5=5f12483b2a98850e9af82756e512445eCAS | 16568765PubMed |

[112]  E. Neubauer, F. von der Kammer, T. Hofmann, Using FlowFFF and HPSEC to determine trace metal–colloid associations in wetland runoff. Water Res. 2013, 47, 2757.
Using FlowFFF and HPSEC to determine trace metal–colloid associations in wetland runoff.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFajtbk%3D&md5=dacaa1b8b60ea2a9d44ccd917fa8caf8CAS | 23528782PubMed |

[113]  E. Neubauer, S. J. Köhler, F. von der Kammer, H. Laudon, T. Hofmann, Effect of pH and stream order on iron and arsenic speciation in boreal catchments. Environ. Sci. Technol. 2013, 47, 7120.
Effect of pH and stream order on iron and arsenic speciation in boreal catchments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvFSlu7k%3D&md5=50fd588ac7128f5a95244ee117765b93CAS | 23692297PubMed |

[114]  E. Neubauer, F. von der Kammer, K.-H. Knorr, S. Peiffer, M. Reichert, T. Hofmann, Colloid-associated export of arsenic in stream water during changing hydrological conditions. Chem. Geo. 2013, 352, 81.
Colloid-associated export of arsenic in stream water during changing hydrological conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOrs7rE&md5=185ea9c45a86459257c52ab823bcebf5CAS |