Foreword to the Research Front on Detection of nanoparticles in the environment
Kevin J. Wilkinson , Jason M. Unrine and Jamie R. LeadEnvironmental Chemistry 11(4) i-ii https://doi.org/10.1071/ENv11n4_FO
Published: 25 August 2014
References
[1] F. von der Kammer, P. L. Ferguson, P. A. Holden, A. Masion, K. R. Rogers, S. J. Klaine, A. A. Keoelmans, N. Horne, J. M. Unrine, Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32.| Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies.Crossref | GoogleScholarGoogle Scholar |
[2] M. D. Montaño, G. V. Lowry, F. von der Kammer, J. Blue, J. F. Ranville, Current status and future direction for examining engineered nanoparticles in natural systems. Environ. Chem. 2014, 11, 351.
| Current status and future direction for examining engineered nanoparticles in natural systems.Crossref | GoogleScholarGoogle Scholar |
[3] B. Nowack, T. D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5.
| Occurrence, behavior and effects of nanoparticles in the environment.Crossref | GoogleScholarGoogle Scholar |
[4] N. C. Mueller, B. Nowack, Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447.
| Exposure modeling of engineered nanoparticles in the environment.Crossref | GoogleScholarGoogle Scholar |
[5] T. Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Comprehensive modeling of environmental emissions of engineered nanomaterials. Environ. Pollut. 2014, 185, 69.
| Comprehensive modeling of environmental emissions of engineered nanomaterials.Crossref | GoogleScholarGoogle Scholar |
[6] R. Prakash, S. Washburn, R. Superfine, R. E. Cheney, Falvo, Visualization of individual carbon nanotubes with fluorescence microscopy using conventional fluorophores. Appl. Phys. Lett. 2003, 83, 1219.
| Falvo, Visualization of individual carbon nanotubes with fluorescence microscopy using conventional fluorophores.Crossref | GoogleScholarGoogle Scholar |
[7] J. W. Kim, N. Kotagiri, J. H. Kim, R. Deaton, In situ fluorescence microscopy visualization and characterization of nanometer-scale carbon nanotubes labeled with 1-pyrenebutanoic acid, succinimidyl ester. Appl. Phys. Lett. 2006, 88, 213 110.
| In situ fluorescence microscopy visualization and characterization of nanometer-scale carbon nanotubes labeled with 1-pyrenebutanoic acid, succinimidyl ester.Crossref | GoogleScholarGoogle Scholar |
[8] M.-N. Croteau, A. D. Dybowska, S. N. Luoma, S. K. Misra, E. Valsami-Jones, Isotopically modified silver nanoparticles to assess nanosilver bioavailability and toxicity at environmentally relevant exposures. Environ. Chem. 2014, 11, 247.
| Isotopically modified silver nanoparticles to assess nanosilver bioavailability and toxicity at environmentally relevant exposures.Crossref | GoogleScholarGoogle Scholar |
[9] K. J. Wilkinson, J. R. Lead, Environmental colloids and particles: behaviour, separation and characterisation, vol. 10 2007 (Wiley: Chichester, UK).
[10] D. J. Burleson, M. D. Driessen, R. L. Penn, On the characterization of environmental nanoparticles. J. Environ. Sci. Health A 2004, 39, 2707.
| On the characterization of environmental nanoparticles.Crossref | GoogleScholarGoogle Scholar |
[11] G. G. Leppard, Nanoparticles in the environment as revealed by transmission electron microscopy: detection, characterisation and activities. Current Nanoscience 2008, 4, 278.
| Nanoparticles in the environment as revealed by transmission electron microscopy: detection, characterisation and activities.Crossref | GoogleScholarGoogle Scholar |
[12] J. Tuoriniemi, S. Gustafsson, E. Olsson, M. Hassellöv, In situ characterisation of physicochemical state and concentration of nanoparticles in soil ecotoxicity studies using environmental scanning electron microscopy. Environ. Chem. 2014, 11, 367.
| In situ characterisation of physicochemical state and concentration of nanoparticles in soil ecotoxicity studies using environmental scanning electron microscopy.Crossref | GoogleScholarGoogle Scholar |
[13] C. A. Johnson, G. Freyer, M. Fabisch, M. A. Caraballo, K. Küsel, M. F. Hochella, Observations and assessment of iron oxide and green rust nanoparticles in metal-polluted mine drainage within a steep redox gradient. Environ. Chem. 2014, 11, 377.
| Observations and assessment of iron oxide and green rust nanoparticles in metal-polluted mine drainage within a steep redox gradient.Crossref | GoogleScholarGoogle Scholar |
[14] W. Wohlleben, G. Vilar, E. Fernández-Rosas, D. González-Gálvez, C. Gabriel, S. Hirth, T. Frechen, D. Stanley, J. Gorham, L. Sung, H.-C. Hsueh, Y.-F. Chuang, T. Nguyen, S. Vazquez-Campos, A pilot interlaboratory comparison of protocols that simulate aging of nanocomposites and detect released fragments. Environ. Chem. 2014, 11, 402.
| A pilot interlaboratory comparison of protocols that simulate aging of nanocomposites and detect released fragments.Crossref | GoogleScholarGoogle Scholar |
[15] J. Tuoriniemi, G. Cornelis, M. Hassellov, Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal. Chem. 2012, 84, 3965.
| Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles.Crossref | GoogleScholarGoogle Scholar |
[16] H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, E. P. Gray, C. P. Higgins, J. F. Ranville, Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ. Sci. Technol. 2012, 46, 12 272.
| Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size.Crossref | GoogleScholarGoogle Scholar |
[17] M. Hadioui, C. Peyrot, K. J. Wilkinson, Improvements to single particle ICPMS by the online coupling of ion exchange resins. Anal. Chem. 2014, 86, 4668.
| Improvements to single particle ICPMS by the online coupling of ion exchange resins.Crossref | GoogleScholarGoogle Scholar |
[18] L. M. Furtado, M. E. Hoque, D. F. Mitrano, J. F. Ranville, B. Cheever, P. C. Frost, M. A. Xenopoulos, H. Hintelmann, C. D. Metcalfe, The persistence and transformation of silver nanoparticles in littoral lake mesocosms monitored using various analytical techniques. Environ. Chem. 2014, 11, 419.
| The persistence and transformation of silver nanoparticles in littoral lake mesocosms monitored using various analytical techniques.Crossref | GoogleScholarGoogle Scholar |
[19] S. Dubascoux, I. L. Hecho, M. Hassellov, F. von der Kammer, M. P. Gautier, G. Lespes, Field-flow fractionation and inductively coupled plasma mass spectrometer coupling: history, development and applications. J. Anal. At. Spectrom. 2010, 25, 613.
| Field-flow fractionation and inductively coupled plasma mass spectrometer coupling: history, development and applications.Crossref | GoogleScholarGoogle Scholar |
[20] A. R. Poda, A. J. Bednar, A. J. Kennedy, A. Harmon, M. Hull, D. M. Mitrano, J. F. Ranville, J. Steevens, Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J. Chromatogr. A 2011, 1218, 4219.
| Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
[21] K. Tiede, A. B. A. Boxall, D. Tiede, S. P. Tear, H. David, J. Lewis, A robust size-characterisation methodology for studying nanoparticle behaviour in 'real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS. J. Anal. At. Spectrom. 2009, 24, 964.
| A robust size-characterisation methodology for studying nanoparticle behaviour in 'real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS.Crossref | GoogleScholarGoogle Scholar |
[22] K. Proulx, K. J. Wilkinson, Separation, detection and characterisation of engineered nanoparticles in natural waters using hydrodynamic chromatography and multi-method detection (light scattering, analytical ultracentrifugation and single particle ICP-MS). Environ. Chem. 2014, 11, 392.
| Separation, detection and characterisation of engineered nanoparticles in natural waters using hydrodynamic chromatography and multi-method detection (light scattering, analytical ultracentrifugation and single particle ICP-MS).Crossref | GoogleScholarGoogle Scholar |