Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Photolysis and TiO2-catalysed degradation of diclofenac in surface and drinking water using circulating batch photoreactors

Devagi Kanakaraju A , Cherie A. Motti B , Beverley D. Glass A and Michael Oelgemöller A C
+ Author Affiliations
- Author Affiliations

A School of Pharmacy and Molecular Sciences, James Cook University Townsville, Qld 4811, Australia.

B Australian Institute of Marine Science (AIMS), Biomolecular Analysis Facility Townsville, Qld 4810, Australia.

C Corresponding author. Email: michael.oelgemoeller@jcu.edu.au

Environmental Chemistry 11(1) 51-62 https://doi.org/10.1071/EN13098
Submitted: 20 May 2013  Accepted: 17 November 2013   Published: 19 February 2014

Environmental context. Diclofenac, a common non-steroidal anti-inflammatory drug, is not completely removed from surface and drinking water by conventional treatment methods. Consequently, this drug is present in the aquatic environment and has been subsequently linked to toxic effects on organisms. We show that photolysis and TiO2-catalysed degradation in circulating batch reactors efficiently results in diclofenac removal under a variety of conditions. These photochemical methods thus may lead to more effective water treatment processes.

Abstract. The occurrence of diclofenac (DCF) as an emerging pollutant in surface waters and drinking water has been attributed to elevated global consumption and the inability of sewage treatment plants to remove DCF. In this study, DCF spiked drinking water and river water was subjected to photolysis and TiO2 photocatalytic treatments in a circulating laboratory-scale (immersion-well) and a demonstration-scale loop reactor (Laboclean). The operational parameters for the immersion-well reactor were optimised as follows: TiO2 P25 loading, 0.1 g L–1; natural pH, 6.2; initial concentration, 30 mg L–1; water type, distilled water. Complete DCF removal was realised within 15 min under the optimised conditions using the immersion-well reactor. Sunlight-mediated photochemical degradation required a prolonged exposure period of up to 360 min for complete DCF removal. DCF in distilled and drinking water was efficiently degraded in the larger Laboclean reactor. Differences were, however, observed based on their pseudo-first-order rate constants, which implies that the water matrix has an effect on the degradation rate. Six major photoproducts, 2-(8-chloro-9H-carbazol-1-yl)acetic acid, 2-(8-hydroxy-9H-carbazol-1-yl)acetic acid, 2,6-dichloro-N-o-tolylbenzenamine, 2-(phenylamino)benzaldehyde, 1-chloromethyl-9H-carbazole and 1-methyl-9H-carbazole, generated from TiO2 photocatalysis of DCF were identified by liquid chromatography–mass spectrometry (LCMS) and Fourier transform–ion cyclotron resonance–mass spectrometry (FT-ICR-MS). This work has shown that photocatalytic degradation kinetics of DCF are dependent on both the geometry of the photoreactor and the nature of the water matrices.

Additional keywords: advanced oxidation processes, pharmaceuticals, photocatalysis, titanium dioxide.


References

[1]  K. Kümmerer, The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. J. Environ. Manage. 2009, 90, 2354.
The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges.Crossref | GoogleScholarGoogle Scholar | 19261375PubMed |

[2]  I. Sirés, E. Brillas, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ. Int. 2012, 40, 212.
Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review.Crossref | GoogleScholarGoogle Scholar | 21862133PubMed |

[3]  B. Halling-Sørensen, S. N. Nielsen, P. F. Lanzky, F. Ingerslev, H. C. H. Lützhøft, S. E. Jørgensen, Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 1998, 36, 357.
Occurrence, fate and effects of pharmaceutical substances in the environment – a review.Crossref | GoogleScholarGoogle Scholar | 9569937PubMed |

[4]  P. Verlicchi, M. Al Aukidy, E. Zambello, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment – a review. Sci. Total Environ. 2012, 429, 123.
Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Cntbo%3D&md5=c5333dabb60ace66f22dd2fb29a5bc7eCAS | 22583809PubMed |

[5]  S. Mompelat, B. Le Bot, O. Thomas, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 2009, 35, 803.
Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsl2gt7c%3D&md5=e4f4fe6161d419df5f20d9fc94098ca3CAS | 19101037PubMed |

[6]  A. M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemöller, J. Tobin, A. Morrissey, Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol. 2011, 8, 649.
Treatment options for wastewater effluents from pharmaceutical companies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSqt77M&md5=d6a9040453622eb3dd5c2b584b987d07CAS |

[7]  A. Y. C. Tong, R. Braund, D. S. Warren, B. M. Peake, TiO2-assisted photodegradation of pharmaceuticals – a review. Cent. Eur. J. Chem. 2012, 10, 989.
TiO2-assisted photodegradation of pharmaceuticals – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVajs74%3D&md5=69ad501dfa9096427870b19d81cb2bc5CAS |

[8]  O. K. Dalrymple, D. H. Yeh, M. A. Trotz, Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J. Chem. Technol. Biotechnol. 2007, 82, 121.
Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1yrtr0%3D&md5=7ca0e047b5aa5cedc293b7677f411ad2CAS |

[9]  M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009, 35, 402.
Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvVWltQ%3D%3D&md5=45a4f5e75673284d4d132c6b5854efc2CAS | 18760478PubMed |

[10]  K. Ikehata, N. J. Naghashkar, M. G. Ei-Din, Degradation of pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci. Eng. 2006, 28, 353.
Degradation of pharmaceuticals by ozonation and advanced oxidation processes: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Gk&md5=b2124126acf68c21be75f115343661a5CAS |

[11]  D. Dimitrakopoulou, I. Rethemiotaki, Z. Frontistis, N. P. Xekoukoulotakis, D. Venieri, D. Mantzavinos, Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J. Environ. Manage. 2012, 98, 168.
Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1artbo%3D&md5=5feed6829ceddf92973a3b838cf87405CAS | 22277347PubMed |

[12]  V. Romero, N. De la Cruz, R. F. Dantas, P. M. J. Giménez, S. Esplugas, Photocatalytic treatment of metoprolol and propranolol. Catal. Today 2011, 161, 115.
Photocatalytic treatment of metoprolol and propranolol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1emt7o%3D&md5=9f63220fc163f09033c3643dfcf1a0f0CAS |

[13]  F. Méndez-Arriaga, S. Esplugas, J. Gimenéz, Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res. 2008, 42, 585.
Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation.Crossref | GoogleScholarGoogle Scholar | 17761209PubMed |

[14]  T. E. Doll, F. H. Frimmel, Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catal. Today 2005, 101, 195.
Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFajtbs%3D&md5=7bee5f361e2d03396900338a24e8f918CAS |

[15]  A. Ziylan, N. H. Ince, The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. J. Hazard. Mater. 2011, 187, 24.
The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVKhurY%3D&md5=611554d9994fee0f016559044b9efb24CAS | 21315511PubMed |

[16]  R. Rodil, J. B. Quintana, E. Concha-Grana, P. Lopez-Mahia, S. Muniategui-Lorenzo, D. Prada-Rodriguez, Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 2012, 86, 1040.
Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyisrs%3D&md5=75d4be92095ce4fcc9fc9e6c43315493CAS | 22189380PubMed |

[17]  H. R. Buser, T. Poiger, M. D. Müller, Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ. Sci. Technol. 1998, 32, 3449.
Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFKmtL0%3D&md5=3c4afd2e783046263132e40b5edb2a88CAS |

[18]  T. Heberer, A. Mechlinski, B. Fanck, A. Knappe, G. Massmann, A. Pekdeger, B. Fritz, Field studies on the fate and transport of pharmaceutical residues in bank filtration. Ground Water Monit. Remediat. 2004, 24, 70.
Field studies on the fate and transport of pharmaceutical residues in bank filtration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFWktbY%3D&md5=0f0027a6659179db84709eedf83187c5CAS |

[19]  N. Paxéus, Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment. Water Sci. Technol. 2004, 50, 253.
| 15497855PubMed |

[20]  B. Hoeger, B. Köllner, D. R. Dietrich, B. Hitzfeld, Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Aquat. Toxicol. 2005, 75, 53.
Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWisbrE&md5=33916a718d256975a95ce042b208d51bCAS | 16139376PubMed |

[21]  J. L. Oaks, M. Gilbert, M. Z. Virani, R. T. Watson, C. U. Meteyer, B. A. Rideout, H. L. Shivaprasad, S. Ahmed, M. J. I. Chaudhry, M. Arshad, S. Mahmood, A. Ali, A. A. Khan, Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004, 427, 630.
Diclofenac residues as the cause of vulture population decline in Pakistan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFCnu7o%3D&md5=0a92b54a65877965b653c90053e69bfcCAS | 14745453PubMed |

[22]  K. Fent, A. A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122.
Ecotoxicology of human pharmaceuticals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2qtQ%3D%3D&md5=5c96664f4b973725ca03d03ea1ab44d2CAS | 16257063PubMed |

[23]  Y. J. Zhang, S. U. Geißen, C. Gal, Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151.
Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSgs7fI&md5=13d6833952e96bab40245e9997c4f4faCAS |

[24]  T. A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245.
Occurrence of drugs in German sewage treatment plants and rivers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslaqt7k%3D&md5=35ff56b6dd4ca7457217753628af0b65CAS |

[25]  R. Salgado, R. Marques, J. P. Noronha, G. Carvalho, A. Oehmen, M. A. M. Reis, Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant. Environ. Sci. Pollut. Res. 2012, 19, 1818.
Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt12htL4%3D&md5=9f110a451ec86c42fbcaf6b07e54d745CAS |

[26]  C. Baeza, D. R. U. Knappe, Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H2O2 advanced oxidation processes. Water Res. 2011, 45, 4531.
Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H2O2 advanced oxidation processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1altbs%3D&md5=f5469fa14ef9ac6c2a202cffed8af15fCAS | 21714983PubMed |

[27]  P. Bartels, W. von Tümpling, Solar radiation influence on the decomposition process of diclofenac in surface waters. Sci. Total Environ. 2007, 374, 143.
Solar radiation influence on the decomposition process of diclofenac in surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvV2qt7g%3D&md5=9ff0747f5f9bc04e7a81fee75c01951aCAS | 17258294PubMed |

[28]  D. Vogna, R. Marotta, A. Napolitano, R. Andreozzi, M. d'Ischia, Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res. 2004, 38, 414.
Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFelsL8%3D&md5=fc2d4c61213d4ab57d6b444adfe0e209CAS | 14675653PubMed |

[29]  J. L. Packer, J. J. Werner, D. E. Latch, K. McNeill, W. A. Arnold, Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid and ibuprofen. Aquat. Sci. 2003, 65, 342.
Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid and ibuprofen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1ehurw%3D&md5=6c61665c3645dfe71d3c59ae1ba937a7CAS |

[30]  J. Kockler, D. Kanakaraju, B. D. Glass, M. Oelgemöller, Photochemical and photocatalytic degradation of diclofenac and amoxicillin using natural and simulated sunlight. J. Sustain. Sci. Manage. 2012, 7, 23.
| 1:CAS:528:DC%2BC38XhtVagtLzP&md5=557cfa3037daa05dde7471a046b15594CAS |

[31]  A. Achilleos, E. Hapeshi, N. P. Xekoukoulotakis, D. Mantzavinos, D. Fatta-Kassinos, Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem. Eng. J. 2010, 161, 53.
Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVyjsb4%3D&md5=94be7635f5877321b37f7c5fab23fb3eCAS |

[32]  L. Rizzo, S. Meric, D. Kassinos, M. Guida, F. Russo, V. Belgiorno, Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res. 2009, 43, 979.
Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVGjuro%3D&md5=48750a9c195f62f88be3458a2a652e80CAS | 19081596PubMed |

[33]  L. Rizzo, S. Meric, M. Guida, D. Kassinos, V. Belgiorno, Heterogeneous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res. 2009, 43, 4070.
Heterogeneous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWlt7nK&md5=25b720523bee2a88b875c8f7a5946edcCAS | 19596131PubMed |

[34]  P. Calza, V. A. Sakkas, C. Medana, C. Baiocchi, A. Dimou, E. Pelizzetti, T. Albanis, Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl. Catal. B 2006, 67, 197.
Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlSrsbs%3D&md5=dc4e2583e91c9472e588fd77902211faCAS |

[35]  T. Heberer, Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol. 2002, 266, 175.
Tracking persistent pharmaceutical residues from municipal sewage to drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFyjur0%3D&md5=6ba934c364dfe957a1fbebd3dd7d3985CAS |

[36]  B. Ohtani, Photocatalysis A to Z – what we know and what we do not know in a scientific sense. J. Photochem. Photobiol. Photochem. Rev. 2010, 11, 157.
Photocatalysis A to Z – what we know and what we do not know in a scientific sense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVKjtLk%3D&md5=385e5d0619095b3299944854fad82aadCAS |

[37]  A. M. Braun, M. T. Maurette, E. Oliveros, Photochemical Technology 1991 (Wiley-VCH: Weinheim).

[38]  APHA, Standard Methods for the Examination of the Water and Wastewater, 18th edn 1992 (American Public Health Association: Washington DC).

[39]  R. Salgado, V. J. Pereira, G. Carvalho, R. Soeiro, V. Gaffney, C. Almeida, V. V. Cardoso, E. Ferreira, M. J. Benoliel, T. A. Ternes, A. Oehmen, M. A. M. Reis, J. P. Noronha, Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. J. Hazard. Mater. 2013, 244–245, 516.
Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater.Crossref | GoogleScholarGoogle Scholar | 23177274PubMed |

[40]  D. E. Moore, S. Robertsthomson, D. Zhen, C. C. Duke, photochemical studies on the antiinflammatory drug diclofenac. Photochem. Photobiol. 1990, 52, 685.
photochemical studies on the antiinflammatory drug diclofenac.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXht1Slug%3D%3D&md5=a97f4d49283a694be7e25305ee897389CAS | 2089417PubMed |

[41]  C. Martínez, M. Canle, M. I. Fernandez, J. A. Santaballa, J. Faria, Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl. Catal. B 2011, 107, 110.
Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials.Crossref | GoogleScholarGoogle Scholar |

[42]  X. Van Doorslaer, P. M. Heynderickx, K. Demeestere, K. Debevere, H. Van Langenhove, J. Dewulf, TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: operational variables and scavenger study. Appl. Catal. B 2012, 111–112, 150.
TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: operational variables and scavenger study.Crossref | GoogleScholarGoogle Scholar |

[43]  A. L. Giraldo, G. A. Peneula, R. A. Torres-Palna, N. J. Pino, R. A. Palominos, H. D. Mansilla, Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res. 2010, 44, 5158.
Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KhtbbJ&md5=0180daabcdd0d4fbcea970e1ce3b318dCAS | 20633918PubMed |

[44]  J. Blanco-Galvez, P. Fernández-Ibáñez, S. Malato-Rodríguez, Solar photocatalytic detoxification and disinfection of water: recent overview. J. Sol. Energy Eng. 2007, 129, 4.
Solar photocatalytic detoxification and disinfection of water: recent overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVaqsw%3D%3D&md5=16fae7583f50b5045bd659e048ce6513CAS |

[45]  D. Friedmann, C. Mendive, D. Bahnemann, TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B 2010, 99, 398.
TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOnt7fK&md5=2e2b8275429ce364cbab85d153e9fd68CAS |

[46]  S. Basha, C. Barr, D. Keane, K. Nolan, A. Morrissey, M. Oelgemöller, J. M. Tobin, On the adsorption/photodegradation of amoxicillin in aqueous solutions by an integrated photocatalytic adsorbent (IPCA): experimental studies and kinetics analysis. Photochem. Photobiol. Sci. 2011, 10, 1014.
On the adsorption/photodegradation of amoxicillin in aqueous solutions by an integrated photocatalytic adsorbent (IPCA): experimental studies and kinetics analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVaqtrg%3D&md5=c52c59e0b25f46f4c90f65de8476c7feCAS | 21380442PubMed |

[47]  L. Yang, L. E. Yu, M. B. Ray, Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res. 2008, 42, 3480.
Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFagurY%3D&md5=b61ea6fe8647c843cb5100d7c3543a07CAS | 18519147PubMed |

[48]  E. Hapeshi, A. Achilleos, M. I. Vasquez, C. Michael, N. P. Xekoukoulotakis, D. Mantzavinos, D. Kassinos, Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res. 2010, 44, 1737.
Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFSht74%3D&md5=eeeffb6f324a6d94b66e01eb4d3e09caCAS | 20031189PubMed |

[49]  M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69.
Environmental applications of semiconductor photocatalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2qur4%3D&md5=d2efbe5fe187d364d407052cb0160d06CAS |

[50]  L. A. Pérez-Estrada, M. I. Maldonado, W. Gernjak, A. Agüera, A. R. Fernández-Alba, M. M. Ballesteros, S. Malato, Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catal. Today 2005, 101, 219.
Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale.Crossref | GoogleScholarGoogle Scholar |

[51]  L. A. Pérez-Estrada, S. Malato, W. Gernjak, A. Agüera, E. M. Thurman, I. Ferrer, A. R. Fernández-Alba, Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ. Sci. Technol. 2005, 39, 8300.
Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway.Crossref | GoogleScholarGoogle Scholar | 16294867PubMed |

[52]  J. H. O. S. Pereira, V. J. P. Villar, M. T. Borges, O. González, S. Esplugas, R. A. R. Boaventura, Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Sol. Energy 2011, 85, 2732.
Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12itL3K&md5=b6505a94fc6a7e9355a03d4afd1a22c8CAS |

[53]  U. I. Gaya, A. H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. Photochem. Rev. 2008, 9, 1.
Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVSgtLY%3D&md5=509b1c16e7828a4eb6e01afac2f90ea3CAS |

[54]  D. Bahnemann, Photocatalytic water treatment: solar energy applications. Sol. Energy 2004, 77, 445.
Photocatalytic water treatment: solar energy applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFGiurs%3D&md5=d81f499c617400d014e6791ad29ab5d8CAS |

[55]  S. Loiselle, D. Vione, C. Minero, V. Maurino, A. Tognazzi, A. M. Dattilo, C. Rossi, L. Bracchini, Chemical and optical phototransformation of dissolved organic matter. Water Res. 2012, 46, 3197.
Chemical and optical phototransformation of dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVajs7s%3D&md5=5003f67995b766a80911f493a1923321CAS | 22503589PubMed |

[56]  P. Calza, E. Pelizzetti, Photocatalytic transformation of organic compounds in the presence of inorganic ions. Pure Appl. Chem. 2001, 73, 1839.
Photocatalytic transformation of organic compounds in the presence of inorganic ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVWntLY%3D&md5=3bc2a609bbbacd2e87f1a1f9a4337dabCAS |

[57]  A. Agüera, L. A. P. Estrada, I. Ferrer, E. M. Thurman, S. Malato, A. R. Fernández-Alba, Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 2005, 40, 908.
Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight.Crossref | GoogleScholarGoogle Scholar | 15934037PubMed |

[58]  C. Sirtori, A. Agüera, W. Gernjak, S. Malato, Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Res. 2010, 44, 2735.
Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFGrtbc%3D&md5=54d3a54f060cf84c830625b2f36849adCAS | 20206373PubMed |

[59]  C. Rodrigues-Silva, M. G. Maniero, S. Rath, J. R. Guimarães, Degradation of flumequine by photocatalysis and evaluation of microbial activity. Chem. Eng. J. 2013, 224, 46.
Degradation of flumequine by photocatalysis and evaluation of microbial activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslyksLzJ&md5=b245c9db633cc17d1a52b2841dde0694CAS |

[60]  V. Augugliaro, M. Bellardita, V. Loddo, G. Palmisano, L. Palmisano, S. Yurdakal, Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobiol. Photochem. Rev. 2012, 13, 224.
Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVyrs7c%3D&md5=b5ac0286ec57e89e9ebedcc7fbfaf456CAS |