Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

The use of permeation liquid membranes for free zinc measurements in aqueous solution

A. Gramlich A D , S. Tandy A , V. I. Slaveykova B , A. Duffner C and R. Schulin A
+ Author Affiliations
- Author Affiliations

A Institute of Terrestrial Ecosystems, ETH, Universitätstr. 16, CH-8092 Zürich, Switzerland.

B Aquatic Biogeochemistry and Ecotoxicology, Faculty of Sciences, University of Geneva, Institute F.A. Forel, 10, route de Suisse, CP 416, CH-1290 Versoix, Switzerland.

C Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen, the Netherlands.

D Corresponding author. Email: anja.gramlich@env.ethz.ch

Environmental Chemistry 9(5) 429-437 https://doi.org/10.1071/EN12103
Submitted: 19 July 2012  Accepted: 9 October 2012   Published: 19 November 2012

Environmental context. The free Zn ion concentration in environmental aqueous systems is an important factor in determining Zn deficiency or toxicity to organisms as this species is directly bioavailable. The permeation liquid membrane technique, a tool to measure either free or bioavailable metal concentrations in solution depending on its setup, was evaluated for the first time for Zn speciation in simplified plant nutrient solutions. The technique is low-cost and applicable to a broad range of aqueous samples.

Abstract. The bioavailability of Zn in environmental water phases strongly depends on its speciation. One important species in studies on Zn deficiency or toxicity to organisms is the free ion. The permeation liquid membrane (PLM) technique is a tool to measure free metal concentrations with a short analysis time of 1 h and at low cost. However, so far it has only been validated for Cd, Cu, Ni and Pb. In this study we tested the effect of carrier concentrations and pH on Zn transport across the organic PLM membrane and the ability of the technique to measure free Zn in synthetic plant nutrient solution. We found that Zn membrane transport is dependent on the concentration of the carrier molecule lauric acid (LA), whereas variations in the concentration of the other carrier molecule, the crown ether Kryptofix 22DD, showed no effect, suggesting that Zn is not transported by the ‘classical’ PLM transport mechanism by binding to the crown ether. Zn preconcentration increased with increasing pH and decreased with increasing ligand concentrations. Using 0.05 M LA, Zn membrane transport is expected to be rate limiting (permeability criterion <<1) and the free Zn concentration can be measured. Under these conditions, PLM measurements agreed well with speciation calculations and with Donnan membrane technique (DMT) measurements in the presence of ligands forming negatively charged Zn complexes (ethylenediaminetetraacetate or citrate). In the presence of L-histidine higher free Zn concentrations than calculated were measured by PLM and DMT, suggesting that positively charged complexes contributed to cross-membrane transport in both methods.

Additional keywords: bioavailability, Donnan membrane technique (DMT), organic ligands, permeation liquid membrane (PLM), Zn speciation.


References

[1]  F. Degryse, E. Smolders, D. R. Parker, Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. Plant Soil 2006, 289, 171.
Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WnsrrJ&md5=c1f8dc9b86fa8c08f579e96528c853f3CAS |

[2]  V. I. Slaveykova, N. Parthasarathy, J. Buffle, K. J. Wilkinson, Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters. Sci. Total Environ. 2004, 328, 55.
Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVWjt7g%3D&md5=aee18b1e9bbffbec99c45d14d339a95fCAS |

[3]  F. Panfili, A. Schneider, A. Vives, F. Perrot, P. Hubert, S. Pellerin, Cadmium uptake by durum wheat in presence of citrate. Plant Soil 2009, 316, 299.
Cadmium uptake by durum wheat in presence of citrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOks70%3D&md5=af4fd63ea56137ed9315422805c95096CAS |

[4]  K. Vercauteren, R. Blust, Bioavailability of dissolved zinc to the common mussel Mytilus edulis in complexing environments. Mar. Ecol. Prog. Ser. 1996, 137, 123.
Bioavailability of dissolved zinc to the common mussel Mytilus edulis in complexing environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsVSnu7c%3D&md5=2546d2ce6d69593c3db22d55c178367fCAS |

[5]  F. Degryse, E. Smolders, D. R. Parker, An agar gel technique demonstrates diffusion limitations to cadmium uptake by higher plants. Environ. Chem. 2006, 3, 419.
An agar gel technique demonstrates diffusion limitations to cadmium uptake by higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWnur7P&md5=98c7d69babcf306acbdcb6eb440c64b0CAS |

[6]  M. Pesavento, G. Alberti, R. Biesuz, Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal. Chim. Acta 2009, 631, 129.
Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWis73L&md5=df0202ebdfdb5983255588567842c580CAS |

[7]  J. Galceran, C. Huidobro, E. Companys, G. Alberti, AGNES: a technique for determining the concentration of free metal ions. The case of ZnII in coastal Mediterranean seawater. Talanta 2007, 71, 1795.
AGNES: a technique for determining the concentration of free metal ions. The case of ZnII in coastal Mediterranean seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1ylu78%3D&md5=e74f03819f3d1f305861d43f46b45a0aCAS |

[8]  E. J. J. Kalis, L. P. Weng, F. Dousma, E. J. M. Temminghoff, W. H. Van Riemsdijk, Measuring free metal ion concentrations in situ in natural waters using the Donnan Membrane Technique. Environ. Sci. Technol. 2006, 40, 955.
Measuring free metal ion concentrations in situ in natural waters using the Donnan Membrane Technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlars7rK&md5=cebb0b651ebb12a50f6d132239309993CAS |

[9]  J. Buffle, N. Parthasarathy, N. Djane, L. Matthiasson, Permeation liquid membranes for field analysis and speciation of trace compounds in waters, in In Situ Monitoring of Aquatic Systems; Chemical Analysis and Speciation (Eds J. Buffle, G. Horvai) 2000, pp. 407–493 (Wiley: Chichester, UK).

[10]  K. Wojciechowski, M. Kucharek, J. Buffle, Mechanism of CuII transport through permeation liquid membranes using azacrown ether and fatty acid as carrier. J. Membr. Sci. 2008, 314, 152.
Mechanism of CuII transport through permeation liquid membranes using azacrown ether and fatty acid as carrier.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFSjtbw%3D&md5=024234b8c65ec8ec349d69762b99a6dcCAS |

[11]  S. Bayen, I. Worms, N. Parthasarathy, K. Wilkinson, J. Buffle, Cadmium bioavailability and speciation using the permeation liquid membrane. Anal. Chim. Acta 2006, 575, 267.
Cadmium bioavailability and speciation using the permeation liquid membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVSku7o%3D&md5=eaf3c1761c9d503ad6445089e88f62e0CAS |

[12]  N. Parthasarathy, M. Pelletier, J. Buffle, Hollow fiber based supported liquid membrane: a novel analytical system for trace metal analysis. Anal. Chim. Acta 1997, 350, 183.
Hollow fiber based supported liquid membrane: a novel analytical system for trace metal analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVWgt70%3D&md5=498f44787894fe7a17aaa50f16ccab3fCAS |

[13]  S. Bayen, K. J. Wilkinson, J. Buffle, The permeation liquid membrane as a sensor for free nickel in aqueous samples. Analyst 2007, 132, 262.
The permeation liquid membrane as a sensor for free nickel in aqueous samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOksrk%3D&md5=7fcaeda5fbb9a85571fb58499baea432CAS |

[14]  N. Parthasarathy, M. Pelletier, J. Buffle, Permeation liquid membrane for trace metal speciation in natural waters – transport of liposoluble CuII complexes. J. Chromatogr. A 2004, 1025, 33.
Permeation liquid membrane for trace metal speciation in natural waters – transport of liposoluble CuII complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVWrtrw%3D&md5=3764ab43cb0cd8a83d01cdb138bfe9faCAS |

[15]  J. Hamilton-Taylor, I. M. Ahmed, W. Davison, H. Zhang, How well can we predict and measure metal speciation in freshwaters? Environ. Chem. 2011, 8, 461.
How well can we predict and measure metal speciation in freshwaters?Crossref | GoogleScholarGoogle Scholar |

[16]  E. R. Unsworth, K. W. Warnken, H. Zhang, W. Davison, F. Black, J. Buffle, J. Cao, R. Cleven, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, H. P. Van Leeuwen, M. Martin, S. Noel, Y. Nur, N. Odzak, J. Puy, W. Van Riemsdijk, L. Sigg, E. Temminghoff, M. L. Tercier-Waeber, S. Toepperwien, R. M. Town, L. P. Weng, H. B. Xue, Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ. Sci. Technol. 2006, 40, 1942.
Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSku7o%3D&md5=f1372c913c38a7567823d9613a4bb5f1CAS |

[17]  D. Chito, L. Weng, A. Galceran, E. Companys, J. Puy, W. H. Van Riemsdijk, H. P. Van Leeuwen, Determination of free Zn2+ concentration in synthetic and natural samples with AGNES (absence of gradients and nernstian equilibrium stripping) and DMT (Donnan Membrane Technique). Sci. Total Environ. 2012, 421–422, 238.
Determination of free Zn2+ concentration in synthetic and natural samples with AGNES (absence of gradients and nernstian equilibrium stripping) and DMT (Donnan Membrane Technique).Crossref | GoogleScholarGoogle Scholar |

[18]  E. J. M. Temminghoff, A. C. C. Plette, R. Van Eck, W. H. Van Riemsdijk, Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique. Anal. Chim. Acta 2000, 417, 149.
Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslWlsb8%3D&md5=6af7d7cb0ea07cd5c544684236358c8aCAS |

[19]  Z. S. Zhang, J. Buffle, H. P. Van Leeuwen, K. Wojciechowski, Roles of metal ion complexation and membrane permeability in the metal flux through lipophilic membranes. Labile complexes at permeation liquid membranes. Anal. Chem. 2006, 78, 5693.
Roles of metal ion complexation and membrane permeability in the metal flux through lipophilic membranes. Labile complexes at permeation liquid membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFCmt7s%3D&md5=1b7c52b59240f22b15b3c85748a1ea69CAS |

[20]  P. Gunkel-Grillon, J. Buffle, Speciation of CuII with a flow-through permeation liquid membrane: discrimination between free copper, labile and inert CuII complexes, under natural water conditions. Analyst 2008, 133, 954.
Speciation of CuII with a flow-through permeation liquid membrane: discrimination between free copper, labile and inert CuII complexes, under natural water conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1art78%3D&md5=63674b7e998505e21562687b9e421633CAS |

[21]  J. Salvador, J. Puy, J. Cecìlia, J. Galceran, Lability of complexes in steady-state finite planar diffusion. Electroanal. Chem. 2006, 588, 303.
Lability of complexes in steady-state finite planar diffusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVSmuro%3D&md5=fbac2acc7dcb35510b7a0d744f9b1776CAS |

[22]  N. Parthasarathy, J. Buffle, Supported liquid membrane for analytical separation of transition metal ions. Part 2. Appraisal of lipophilic 1,10-didecyl-1,10-diaza-18-crown-6 as metal ion carrier in the membrane. Anal. Chim. Acta 1991, 254, 9.
Supported liquid membrane for analytical separation of transition metal ions. Part 2. Appraisal of lipophilic 1,10-didecyl-1,10-diaza-18-crown-6 as metal ion carrier in the membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XnsFSlug%3D%3D&md5=75b73a095182d0347b84b5591b79a5cdCAS |

[23]  N. Parthasarathy, M. Pelletier, J. Buffle, Transport of lipophilic metal complexes through permeation liquid membrane, in relation to natural water analysis: CuII-8-hydroxyquinoline complex as a model compound. J. Membr. Sci. 2010, 355, 78.
Transport of lipophilic metal complexes through permeation liquid membrane, in relation to natural water analysis: CuII-8-hydroxyquinoline complex as a model compound.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltF2ntb0%3D&md5=dead5c165f234e9ca1c29204d8697e93CAS |

[24]  A. Kandegedara, D. B. Rorabacher, Noncomplexing tertiary amines as ‘better’ buffers covering the range of pH 3–11. Temperature dependence of their acid dissociation constants. Anal. Chem. 1999, 71, 3140.
Noncomplexing tertiary amines as ‘better’ buffers covering the range of pH 3–11. Temperature dependence of their acid dissociation constants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFams7o%3D&md5=f8141a5aeea030a29ecd249605681bf1CAS |

[25]  L. Sigg, F. Black, J. Buffle, J. Cao, R. Cleven, W. Davison, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, M. Martin, S. Noel, Y. Nur, N. Odzak, J. Puy, W. Van Riemsdijk, E. Temminghoff, M. L. Tercier-Waeber, S. Toepperwien, R. M. Town, E. Unsworth, K. W. Warnken, L. P. Weng, H. B. Xue, H. Zhang, Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ. Sci. Technol. 2006, 40, 1934.
Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yhsLk%3D&md5=a2f0df1b475e20000d4d274ad0c46b1bCAS |

[26]  J. Buffle, Z. Zhang, K. Startchev, Metal flux and dynamic speciation at (Biol.)interfaces. part 1. Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Environ. Sci. Technol. 2007, 41, 7609.
Metal flux and dynamic speciation at (Biol.)interfaces. part 1. Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymtr3E&md5=4f50a1f5aeb92bbe6797c5eeef07a4e0CAS |

[27]  A. L. Boreen, B. L. Edhlund, J. B. Cotner, K. Mcneill, Indirect photodegradation of dissolved free amino acids: The contribution of singlet oxygen and the differential reactivity of DOM from various sources. Environ. Sci. Technol. 2008, 42, 5492.
Indirect photodegradation of dissolved free amino acids: The contribution of singlet oxygen and the differential reactivity of DOM from various sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1Cltbc%3D&md5=53aec1656906d81307835ae91aa0e7deCAS |

[28]  F. M. M. Morel, J. G. Hering, Principles and Applications of Aquatic Chemistry 1993 (Wiley: New York).

[29]  R. A. G. Jansen, H. P. Van Leeuwen, R. M. J. Cleven, M. A. G. T. Van Den Hoop, Speciation and lability of Zinc(II) in river waters. Environ. Sci. Technol. 1998, 32, 3882.
Speciation and lability of Zinc(II) in river waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntVKgur4%3D&md5=c3f7628488f44821014468665df93e65CAS |

[30]  A. E. Martell, R. M. Smith, R. J. Motekaitis, NIST Database Version 6.0, Gaithersburg, MD, 2001.

[31]  M. R. Twiss, O. Errecalde, C. Fortin, P. G. C. Campbell, C. Jumarie, F. Denizeau, E. Berkelaar, B. Hale, K. Van Rees, Coupling the use of computer chemical speciation models and culture techniques in laboratory investigations of trace metal toxicity. Chem. Spec. Bioavail. 2001, 13, 9.
Coupling the use of computer chemical speciation models and culture techniques in laboratory investigations of trace metal toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFGqsb8%3D&md5=349db96e005b3174c5a08504dcd3a978CAS |

[32]  R Development Core Team, R: a Language and Environment for Statistical Computing 2009 (Institute of Statistics and Mathematics: Vienna, Austria). Available at http://www.R-project.org [verified 22 October 2012].

[33]  A. R. A. Usman, The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma 2008, 144, 334.
The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitl2jtrs%3D&md5=1a3912515e9a1364fddf24345ce01a53CAS |

[34]  F. Guyon, N. Parthasarathy, J. Buffle, Permeation liquid membrane metal transport: Studies of complex stoichiometries and reactions in CuII extraction with the mixture 22DD-laurate in toluene/phenylhexane. Anal. Chem. 2000, 72, 1328.
Permeation liquid membrane metal transport: Studies of complex stoichiometries and reactions in CuII extraction with the mixture 22DD-laurate in toluene/phenylhexane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVOntLc%3D&md5=40b871cf944b62afcc250060445013c2CAS |

[35]  N. Parthasarathy, M. Pelletier, J. Buffle, Transport of lipophilic ligands through permeation liquid membrane in relation to natural water analysis. J. Membr. Sci. 2008, 309, 182.
Transport of lipophilic ligands through permeation liquid membrane in relation to natural water analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVan&md5=03139346ff238df7c11843e04bd97c45CAS |

[36]  S. Bayen, P. Gunkel-Grillon, I. Worms, M. Martin, J. Buffle, Influence of inorganic complexes on the transport of trace metals through permeation liquid membrane. Anal. Chim. Acta 2009, 646, 104.
Influence of inorganic complexes on the transport of trace metals through permeation liquid membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlSnurw%3D&md5=2bf98828cd4c8b1f47fd2ba2873fcb10CAS |