Fluorescence properties of dissolved organic matter in coastal Mediterranean waters influenced by a municipal sewage effluent (Bay of Marseilles, France)
M. Tedetti A B , R. Longhitano A , N. Garcia A , C. Guigue A , N. Ferretto A and M. Goutx AA Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, F-13288 Marseille, Cedex 09, France.
B Corresponding author. Email: marc.tedetti@univ-amu.fr
Environmental Chemistry 9(5) 438-449 https://doi.org/10.1071/EN12081
Submitted: 5 June 2012 Accepted: 1 August 2012 Published: 31 August 2012
Environmental context. Marine dissolved organic matter plays a key role in the global carbon cycle. Questions remain, however, as to the influence of anthropogenic activities on its composition and distribution in coastal waters. It was found that dissolved organic matter in the vicinity of a municipal sewage effluent (Marseilles City, France) contained a high proportion of protein-like material, thereby demonstrating the influence of human activities on coastal dissolved organic matter.
Abstract. Fluorescent dissolved organic matter (FDOM) in coastal marine waters influenced by the municipal sewage effluent (SE) from Marseilles City (France, north-western Mediterranean Sea) has been characterised. Samples were collected eleven times from September 2008 to June 2010 in the Bay of Marseilles along a coast–open sea transect from the SE outlet in the South Bay and at the Mediterranean Institute Observation site in the central Bay. Fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC) allowed the identification of two protein-like (tyrosine C1, with excitation maxima (λEx) and an emission maximum (λEm) of <230, 275/306 nm; tryptophan C2, λEx/λEm <230, 270/346 nm) and three humic-like components (marine humic C3, λEx/λEm 280/386 nm; C4, λEx/λEm 235, 340/410 nm; C5, λEx/λEm 255, 365/474 nm). From the SE outlet to the central Bay, a gradient appeared, with decreasing FDOM intensities, decreasing dissolved organic carbon, particulate carbon, nutrients and faecal bacteria concentrations and increasing salinity values. This gradient was associated with decreasing abundances in protein-like fluorophores and rising abundances in humic-like (C3 and C5) materials. This shift in FDOM composition illustrated the decrease in wastewater inputs and the increase in marine sources of DOM along the transect. FDOM data showed that the Marseilles SE spread up to 1500 m off the outlet, but it did not reach the central Bay. Tryptophan-like material was the dominant fluorophore in the SE and displayed the highest correlations with biogeochemical parameters (organic carbon, phosphates, faecal bacteria). Therefore, it is proposed to use its fluorescence intensity to detect and track SE inputs in the Marseilles coastal marine waters.
Additional keywords: Cortiou, EEM fluorescence, PARAFAC, tryptophan.
References
[1] J. I. Hedges, Why dissolved organics matter? in Biogeochemistry of Marine Dissolved Organic Matter (Eds D. A. Hansell, C. A. Carlson) 2002, pp. 1–33 (Academic Press: San Diego, CA).[2] C. A. Carlson, Production and removal processes, in Biogeochemistry of Marine Dissolved Organic Matter (Eds D. A. Hansell, C. A. Carlson) 2002, pp. 91–152 (Academic Press: San Diego, CA).
[3] N. Jiao, G. J. Herndl, D. A. Hansell, R. Benner, G. Kattner, S. W. Wilhelm, D. L. Kirchman, M. G. Weinbauer, T. Luo, F. Chen, F. Azam, Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean Nat. Rev. Microbiol. 2010, 8, 593.
| Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global oceanCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWku70%3D&md5=63db4d3ab7db89bdbb0858967c4e8313CAS |
[4] P. G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy Mar. Chem. 1996, 51, 325.
| Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnslWltg%3D%3D&md5=e7bc893d5733dce81b34e7bf9db863b6CAS |
[5] P. G. Coble, Marine optical biogeochemistry – the chemistry of ocean color Chem. Rev. 2007, 107, 402.
| Marine optical biogeochemistry – the chemistry of ocean colorCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVGgtA%3D%3D&md5=5128c73f4aeaa714bdc06b7b0217b4fbCAS |
[6] N. Hudson, A. Baker, D. Reynolds, Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review River Res. Appl. 2007, 23, 631.
| Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a reviewCrossref | GoogleScholarGoogle Scholar |
[7] J. B. Fellman, E. Hood, R. G. M. Spencer, Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review Limnol. Oceanogr. 2010, 55, 2452.
| Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a reviewCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1emtL3E&md5=33fe78e1d3d465aeb734723b3905ff52CAS |
[8] Y. Yamashita, E. Tanoue, Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids Mar. Chem. 2003, 82, 255.
| Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acidsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFamu78%3D&md5=aa9a8e15ed0dbc52c9ad8fdb9980ae5aCAS |
[9] C. J. Brown, B. W. Knight, M. E. McMaster, K. R. Munkittrick, K. D. Oakes, G. R. Tetreault, M. R. Servos, The effects of tertiary treated municipal wastewater on fish communities of a small river tributary in southern Ontario, Canada Environ. Pollut. 2011, 159, 1923.
| The effects of tertiary treated municipal wastewater on fish communities of a small river tributary in southern Ontario, CanadaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVaisr4%3D&md5=85d224af0e866d78fe1f1b2fe9638409CAS |
[10] S. E. Holm, J. G. Windsor, Exposure assessment of sewage treatment plant effluent by a selected chemical marker method Arch. Environ. Contam. Toxicol. 1990, 19, 674.
| Exposure assessment of sewage treatment plant effluent by a selected chemical marker methodCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvFOgu78%3D&md5=fac3e793f2948baf5287b4949ae97468CAS |
[11] P. A. Chambers, M. Allard, S. L. Walker, J. Marsalek, J. Lawrence, M. Servos, J. Busnarda, K. S. Munger, C. Jefferson, R. A. Kent, M. P. Wong, K. Adare, Impacts of municipal wastewater effluents on Canadian waters: a review Water Qual. Res. J. Canada 1997, 32, 659.
| 1:CAS:528:DyaK2sXmvVWmtrc%3D&md5=35674f2e78c4c1afe43bb75247ba9ecaCAS |
[12] K. P. Singh, D. Mohan, S. Sinha, R. Dalwani, Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area Chemosphere 2004, 55, 227.
| Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal areaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVKgtg%3D%3D&md5=4396a2e92b4419820bd2a212dce963f2CAS |
[13] R. P. Galapate, A. U. Baes, K. Ito, T. Mukai, E. Shoto, M. Okada, Detection of domestic wastes in Kurose River using synchronous fluorescence spectroscopy Water Res. 1998, 32, 2232.
| Detection of domestic wastes in Kurose River using synchronous fluorescence spectroscopyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVOlsbw%3D&md5=5ba222c68c01c80d52a8e16daec31174CAS |
[14] A. Baker, R. Inverarity, M. E. Charlton, S. Richmond, Detecting river pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE England Environ. Pollut. 2003, 124, 57.
| Detecting river pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE EnglandCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis12gur4%3D&md5=dc427ff7b7994b0c4b138b7a0893d9e7CAS |
[15] R. D. Holbrook, J. Breidenich, P. C. DeRose, Impact of reclaimed water on select organic matter properties of a receiving stream-fluorescence and perylene sorption behavior Environ. Sci. Technol. 2005, 39, 6453.
| Impact of reclaimed water on select organic matter properties of a receiving stream-fluorescence and perylene sorption behaviorCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Wqtrw%3D&md5=0d973ccadb14792aa00aa2fefef3c935CAS |
[16] R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, S. J. Khan, Fluorescence as a potential monitoring tool for recycled water systems: A review Water Res. 2009, 43, 863.
| Fluorescence as a potential monitoring tool for recycled water systems: A reviewCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVGjtLo%3D&md5=5ce6058b2b764a1cb5e0d3414de823fdCAS |
[17] D. M. Reynolds, S. R. Ahmad, Rapid and direct determination of wastewater BOD values using a fluorescence technique Water Res. 1997, 31, 2012.
| Rapid and direct determination of wastewater BOD values using a fluorescence techniqueCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlSgtbk%3D&md5=5ff872ef9f80bb471a705956249c933eCAS |
[18] R. Arunachalam, H. K. Shah, L.-K. Ju, Monitoring aerobic sludge digestion by online scanning fluorometry Water Res. 2005, 39, 1205.
| Monitoring aerobic sludge digestion by online scanning fluorometryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVCltbw%3D&md5=2b865e029a6860018054d347fa3d3783CAS |
[19] I. Saadi, M. Borisover, R. Armon, Y. Laor, Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements Chemosphere 2006, 63, 530.
| Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurementsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFGjs78%3D&md5=41340cc3fda93b48e858297bedf2d6cdCAS |
[20] D. M. Reynolds, The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy J. Chem. Technol. Biotechnol. 2002, 77, 965.
| The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFegtLY%3D&md5=7390440996de50f08a286b45c8f2b356CAS |
[21] S. Elliott, J. R. Lead, A. Baker, Characterisation of the fluorescence from freshwater, planktonic bacteria Water Res. 2006, 40, 2075.
| Characterisation of the fluorescence from freshwater, planktonic bacteriaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFyju70%3D&md5=bdbf384b13807f725e184a42333e32b1CAS |
[22] N. Hudson, A. Baker, D. Ward, D. M. Reynolds, C. Brunsdon, C. Carliell-Marquet, S. Browning, Can fluorescence spectrometry be used as a surrogate for the biochemical oxygen demand (BOD) test in water quality assessment? An example from south west England Sci. Total Environ. 2008, 391, 149.
| Can fluorescence spectrometry be used as a surrogate for the biochemical oxygen demand (BOD) test in water quality assessment? An example from south west EnglandCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOisb7M&md5=81855855aafafe2ad5fd56c92301b1b9CAS |
[23] S. R. Ahmad, D. M. Reynolds, Monitoring of water quality using fluorescence technique: prospect of on-line process control Water Res. 1999, 33, 2069.
| Monitoring of water quality using fluorescence technique: prospect of on-line process controlCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslGjs7w%3D&md5=117b3e6c9fdc115c4016d73583182873CAS |
[24] A. Baker, Fluorescence properties of some farm wastes: implications for water quality monitoring Water Res. 2002, 36, 189.
| Fluorescence properties of some farm wastes: implications for water quality monitoringCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1KhurY%3D&md5=7d46b0a59703903164c72a36370e2597CAS |
[25] A. Baker, D. Ward, S. H. Lieten, R. Periera, E. C. Simpson, M. Slater, Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer Water Res. 2004, 38, 2934.
| Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometerCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFOntbs%3D&md5=c94becd61dced1290f91d2fea6418519CAS |
[26] R. G. M. Spencer, A. Baker, J. M. E. Ahad, G. L. Cowie, R. Ganeshram, R. C. Upstill-Goddard, G. Uher, Discriminatory classification of natural and anthropogenic waters in two U.K. estuaries Sci. Total Environ. 2007, 373, 305.
| Discriminatory classification of natural and anthropogenic waters in two U.K. estuariesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFOmsQ%3D%3D&md5=9dc4efd7f406813bedad45f8b2362e49CAS |
[27] K. C. Filippino, M. R. Mulholland, P. W. Bernhardt, G. E. Boneillo, R. E. Morse, M. Semcheski, H. Marshall, N. G. Love, Q. Roberts, D. A. Bronk, The bioavailability of effluent-derived organic nitrogen along an estuarine salinity gradient Estuaries Coasts 2011, 34, 269.
| The bioavailability of effluent-derived organic nitrogen along an estuarine salinity gradientCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1anu74%3D&md5=4e263e62b6cf4135eba0919dbefcf4c3CAS |
[28] A. A. Petrenko, B. H. Jones, T. D. Dickey, M. LeHaitre, C. Moore, Effects of a sewage plume on the biology, optical characteristics, and particle size distributions of coastal waters J. Geophys. Res. 1997, 102, 25061.
| Effects of a sewage plume on the biology, optical characteristics, and particle size distributions of coastal watersCrossref | GoogleScholarGoogle Scholar |
[29] C. D. Clark, A. P. O’Connor, D. M. Foley, W. J. de Bruyn, A study of fecal coliform sources at a coastal site using colored dissolved organic matter (CDOM) as a water source tracer Mar. Pollut. Bull. 2007, 54, 1507.
| A study of fecal coliform sources at a coastal site using colored dissolved organic matter (CDOM) as a water source tracerCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmurjL&md5=8fc489d962f93654ff89b4157effc5d0CAS |
[30] J. F. Zhuo, W. D. Guo, X. Deng, Z. Y. Zhang, J. Xu, L. F. Huang, Fluorescence excitation-emission matrix spectroscopy of CDOM from Yundang Lagoon and its indication for organic pollution Spectrosc. Spect. Anal. 2010, 30, 1539.
| 1:CAS:528:DC%2BC3cXnsVeltL0%3D&md5=19dbc49a1ecf6d16c52c95f8e8fa175cCAS |
[31] G. Bellan, M. Bourcier, C. Salen-Picard, A. Arnoux, S. Casserley, Benthic ecosystem changes associated with wastewater treatment at marseille: implications for the protection and restoration of the Mediterranean coastal shelf ecosystems Water Environ. Res. 1999, 71, 483.
| Benthic ecosystem changes associated with wastewater treatment at marseille: implications for the protection and restoration of the Mediterranean coastal shelf ecosystemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFKqur4%3D&md5=c1da7fc1ea58d152728fed4b3ce9c890CAS |
[32] R. Arfi, A. Arnoux, G. Bellan, D. Bellan-Santini, M. Bourcier, S. Dunkan, J.-P. Durbec, L. Laubier, J. Marinopoulos, C. Millot, T. Moutin, G. Patriti, C. Pergent-Martini, A. Petrenko, Impact du grand émissaire de Marseille et de l’Huveaune détournée sur l’environnement marin de Cortiou – Etude bibliographique raisonnée 1960–2000 2000 (Centre d’Océanologie de Marseille: Ville de Marseille).
[33] A. Togola, H. Budzinski, Multi-residue analysis of pharmaceutical compounds in aqueous samples J. Chromatogr. A 2008, 1177, 150.
| Multi-residue analysis of pharmaceutical compounds in aqueous samplesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOls7nN&md5=37cc3116e2acda78dc97465dbc3d235bCAS |
[34] A. D. Syakti, L. Asia, F. Kanzari, H. Umasangadji, L. Malleret, Y. Ternois, G. Mille, P. Doumenq, Distribution of organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in marine sediments directly exposed to wastewater from Cortiou, Marseille Environ. Sci. Pollut. Res 2012, 19, 1524.
| Distribution of organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in marine sediments directly exposed to wastewater from Cortiou, MarseilleCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt12it7k%3D&md5=91e22ad71de7437365443d118741297cCAS |
[35] I. L. Pairaud, J. Gatti, N. Bensoussan, R. Verney, P. Garreau, Hydrology and circulation in a coastal area off Marseille: Validation of a nested 3D model with observations J. Mar. Syst. 2011, 88, 20.
| Hydrology and circulation in a coastal area off Marseille: Validation of a nested 3D model with observationsCrossref | GoogleScholarGoogle Scholar |
[36] R. Arfi, G. Patriti, Impact d’une pollution urbaine sur la partie zooplanctonique d’un systeme neritique (Marseille – Cortiou) Hydrobiologia 1987, 144, 11.
| Impact d’une pollution urbaine sur la partie zooplanctonique d’un systeme neritique (Marseille – Cortiou)Crossref | GoogleScholarGoogle Scholar |
[37] M. Tedetti, C. Guigue, M. Goutx, Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters Mar. Pollut. Bull. 2010, 60, 350.
| Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1ersb0%3D&md5=037554a6f2038ae99c3204e1918c6e2bCAS |
[38] T. Ohno, Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter Environ. Sci. Technol. 2002, 36, 742.
| Fluorescence inner-filtering correction for determining the humification index of dissolved organic matterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFai&md5=a631e673a5f66614211dc074ba004bb0CAS |
[39] K. R. Murphy, K. D. Butler, R. G. Spencer, C. A. Stedmon, J. R. Boehme, G. R. Aiken, Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison Environ. Sci. Technol. 2010, 44, 9405.
| Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparisonCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmsrrI&md5=d525401ae8f995c38279decda11568b8CAS |
[40] R. Sohrin, R. Sempéré, Seasonal variation in total organic carbon in the Northeast Atlantic in 2000–2001 J. Geophys. Res. 2005, 110, C10S90.
| Seasonal variation in total organic carbon in the Northeast Atlantic in 2000–2001Crossref | GoogleScholarGoogle Scholar |
[41] A. Aminot, R. Kérouel, Hydrologie des écosystèmes marins. Paramètres et analyses 2004.
[42] A. Aminot, R. Kérouel, Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu, in Méthodes d’analyses en milieu marin 2007 (Ifremer: Brest, France).
[43] J. F. Hernandez, J. M. Guilbert, J. M. Delattre, C. Oger, C. Charrière, B. Hughes, R. Serceau, F. Sinègre, Evaluation of a miniaturized procedure for enumeration of Escherichia coli in sea water, based upon hydrolysis of 4-methylumbelliferyl β-d-glucuronide Water Res. 1991, 25, 1073.
| Evaluation of a miniaturized procedure for enumeration of Escherichia coli in sea water, based upon hydrolysis of 4-methylumbelliferyl β-d-glucuronideCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsVWrtL4%3D&md5=4447f43d58fc6b6148bab19cee8b5188CAS |
[44] R. Bro, PARAFAC: tutorial and applications Chemom. Intell. Lab. Syst. 1997, 38, 149.
| PARAFAC: tutorial and applicationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1Khs7o%3D&md5=e8f3319bc799834d62efd7b95ac63d9eCAS |
[45] C. A. Stedmon, S. Markager, R. Bro, Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy Mar. Chem. 2003, 82, 239.
| Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFamurc%3D&md5=e0aef22e22dd2f64b062666296ac1745CAS |
[46] C. Stedmon, R. Bro, Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial Limnol. Oceanogr. Methods 2008, 6, 572.
| Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorialCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWqsL%2FL&md5=2e23d75cd51ac3eb285524972010c901CAS |
[47] P. Brasseur, J. M. Beckers, J. M. Brankart, R. Schoenauen, Seasonal temperature and salinity fields in the Mediterranean Sea: climatological analyses of a historical data set Deep Sea Res. Part I Oceanogr. Res. Pap. 1996, 43, 159.
| Seasonal temperature and salinity fields in the Mediterranean Sea: climatological analyses of a historical data setCrossref | GoogleScholarGoogle Scholar |
[48] J.-C. Marty, J. Chiaverini, M.-D. Pizay, B. Avril, Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999) Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 1965.
| Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjsl2lt7Y%3D&md5=6d414176311d83f2b78ebb8c2a71a44fCAS |
[49] M. Goutx, C. Guigue, D. Aritio, J. F. Ghiglione, M. Pujo-Pay, V. Raybaud, M. Duflos, L. Prieur, Short term summer to autumn variability of dissolved lipid classes in the Ligurian sea (NW Mediterranean) Biogeosciences 2009, 6, 1229.
| Short term summer to autumn variability of dissolved lipid classes in the Ligurian sea (NW Mediterranean)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OhtLvJ&md5=7234dc614edc6bbe88d1955e31d184c0CAS |
[50] E. Parlanti, K. Wörz, L. Geoffroy, M. Lamotte, Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs Org. Geochem. 2000, 31, 1765.
| Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVCkuw%3D%3D&md5=2092fd29bf8ebc2d9f0251f2cc00c2b7CAS |
[51] C. Romera-Castillo, H. Sarmento, X. A. Álvarez-Salgado, J. M. Gasol, C. Marrasé, Production of chromophoric dissolved organic matter by marine phytoplankton Limnol. Oceanogr. 2010, 55, 446.
| Production of chromophoric dissolved organic matter by marine phytoplanktonCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSgu7Y%3D&md5=d7b1a6c50e9880990d65c6dbdcd4d553CAS |
[52] Y. Yamashita, R. M. Cory, J. Nishiok, K. Kumad, E. Tanoue, R. Jaffe, Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean Deep-Sea Res. 2010, 57, 1478.
| Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific OceanCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Wktbc%3D&md5=7b4638c5aea2fe61ccae78ad45d88b53CAS |
[53] C. Lønborg, X. A. Álvarez-Salgado, K. Davidson, S. Martínez-García, E. Teira, Assessing the microbial bioavailability and degradation rate constants of dissolved organic matter by fluorescence spectroscopy in the coastal upwelling system of the Ría de Vigo Mar. Chem. 2010, 119, 121.
| Assessing the microbial bioavailability and degradation rate constants of dissolved organic matter by fluorescence spectroscopy in the coastal upwelling system of the Ría de VigoCrossref | GoogleScholarGoogle Scholar |
[54] J. R. Lakowicz, Principles of Fluorescence Spectroscopy 1983 (Plenum Press: New York).
[55] Y. Yamashita, E. Tanoue, In situ production of chromophoric dissolved organic matter in coastal environments Geophys. Res. Lett. 2004, 31, L14302.
| In situ production of chromophoric dissolved organic matter in coastal environmentsCrossref | GoogleScholarGoogle Scholar |
[56] C. Lønborg, X. A. Álvarez-Salgado, K. Davidson, A. E. J. Miller, Production of bioavailable and refractory dissolved organic matter by coastal heterotrophic microbial populations Estuar. Coast. Shelf Sci. 2009, 82, 682.
| Production of bioavailable and refractory dissolved organic matter by coastal heterotrophic microbial populationsCrossref | GoogleScholarGoogle Scholar |
[57] K. Shimotori, K. Watanabe, T. Hama, Fluorescence characteristics of humic-like fluorescent dissolved organic matter produced by various taxa of marine bacteria Aquat. Microb. Ecol. 2012, 65, 249.
| Fluorescence characteristics of humic-like fluorescent dissolved organic matter produced by various taxa of marine bacteriaCrossref | GoogleScholarGoogle Scholar |
[58] S. Singh, E. J. D’Sa, E. M. Swenson, Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation–emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) Sci. Total Environ. 2010, 408, 3211.
| Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation–emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlOitr4%3D&md5=cdd442ef4ea320f81e67719427a52b82CAS |
[59] J. Para, P. G. Coble, B. Charrière, M. Tedetti, C. Fontana, R. Sempéré, Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River Biogeosciences 2010, 7, 4083.
| Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône RiverCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVGls7Y%3D&md5=232c80bcf15dd13300f0c9d8a694d3d1CAS |
[60] K. R. Murphy, A. Hambly, S. Singh, R. K. Henderson, A. Baker, R. Stuetz, S. J. Khan, Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model Environ. Sci. Technol. 2011, 45, 2909.
| Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC modelCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFersrg%3D&md5=b514272cfe1ad3ec636fc255f501b446CAS |
[61] C. A. Stedmon, S. Markager, Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis Limnol. Oceanogr. 2005, 50, 686.
| Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFahsLc%3D&md5=e1f6ee632083afaaa4e1237a6cd71cacCAS |
[62] P. Kowalczuk, M. J. Durako, H. Young, A. E. Kahn, W. J. Cooper, M. Gonsior, Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability Mar. Chem. 2009, 113, 182.
| Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variabilityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlGluro%3D&md5=a20990e30afc4a5eddefcb1b57d076f1CAS |
[63] Y. Zhang, E. Zhang, Y. Yin, M. A. van Dijk, L. Feng, Z. Shi, M. Liu, B. Qin, Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude Limnol. Oceanogr. 2010, 55, 2645.
| 1:CAS:528:DC%2BC3cXhs1emtLrE&md5=a72912348896e6e64c88ced25d75b296CAS |
[64] J. Fellman, K. Petrone, P. Grierson, Source, biogeochemical cycling, and fluorescence characteristics of dissolved organic matter in an agro-urban estuary Limnol. Oceanogr. 2011, 56, 243.
| Source, biogeochemical cycling, and fluorescence characteristics of dissolved organic matter in an agro-urban estuaryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVGit7o%3D&md5=a58a28a80c800d185671b03e04d3dfebCAS |
[65] M. Tedetti, P. Cuet, C. Guigue, M. Goutx, Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopy Sci. Total Environ. 2011, 409, 2198.
| Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFWitr8%3D&md5=609631ec5d4c2acc4cd0c51acbdc1727CAS |