Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Arsenic speciation in food chains from mid-Atlantic hydrothermal vents

Vivien F. Taylor A F , Brian P. Jackson A , Matthew R. Siegfried B , Jana Navratilova C , Kevin A. Francesconi D , Julie Kirshtein E and Mary Voytek E
+ Author Affiliations
- Author Affiliations

A Trace Element Analysis Core HB 6105 Fairchild Hall Dartmouth College, Hanover, NH 03755, USA.

B Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, MC 0225, La Jolla, CA 92093, USA.

C Faculty of Chemistry, Brno University of Technology, Institute of Food Science and Biotechnology, CZ-61200 Brno, Czech Republic.

D Institute of Chemistry, Karl-Franzens University Graz, Universitaetsplatz 1, A-8010 Graz, Austria.

E US Geological Survey, MS 430, 12201 Sunrise Valley Drive, Reston, VA 20192, USA.

F Corresponding author. Email: vivien.f.taylor@dartmouth.edu

Environmental Chemistry 9(2) 130-138 https://doi.org/10.1071/EN11134
Submitted: 22 October 2011  Accepted: 17 January 2012   Published: 4 May 2012

Environmental context. Arsenic occurs in marine organisms at high levels and in many chemical forms. A common explanation of this phenomenon is that algae play the central role in accumulating arsenic by producing arsenic-containing sugars that are then converted into simpler organic arsenic compounds found in fish and other marine animals. We show that animals in deep-sea vent ecosystems, which are uninhabited by algae, contain the same organic arsenic compounds as do pelagic animals, indicating that algae are not the only source of these compounds.

Abstract. Arsenic concentration and speciation were determined in benthic fauna collected from the Mid-Atlantic Ridge hydrothermal vents. The shrimp species, Rimicaris exoculata, the vent chimney-dwelling mussel, Bathymodiolus azoricus, Branchipolynoe seepensis, a commensal worm of B. azoricus and the gastropod Peltospira smaragdina showed variations in As concentration and in stable isotope (δ13C and δ15N) signature between species, suggesting different sources of As uptake. Arsenic speciation showed arsenobetaine to be the dominant species in R. exoculata, whereas in B. azoricus and B. seepensis arsenosugars were most abundant, although arsenobetaine, dimethylarsinate and inorganic arsenic were also observed, along with several unidentified species. Scrape samples from outside the vent chimneys covered with microbial mat, which is a presumed food source for many vent organisms, contained high levels of total As, but organic species were not detectable. The formation of arsenosugars in pelagic environments is typically attributed to marine algae, and the pathway to arsenobetaine is still unknown. The occurrence of arsenosugars and arsenobetaine in these deep sea organisms, where primary production is chemolithoautotrophic and stable isotope analyses indicate food sources are of vent origin, suggests that organic arsenicals can occur in a foodweb without algae or other photosynthetic life.


References

[1]  K. A. Francesconi, J. S. Edmonds, Arsenic and marine organisms Adv. Inorg. Chem. 1997, 44, 44 147.

[2]  F. L. Hellweger, Dynamics of arsenic speciation in surface waters: AsIII production by algae. Appl. Organomet. Chem. 2005, 19, 727.
Dynamics of arsenic speciation in surface waters: AsIII production by algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFymuro%3D&md5=68c6e1a0a7bd8e16f374c92f06c66ad1CAS |

[3]  F. L. Hellweger, U. Lall, Modeling the effect of algal dynamics on arsenic speciation in Lake Biwa. Environ. Sci. Technol. 2004, 38, 6716.
Modeling the effect of algal dynamics on arsenic speciation in Lake Biwa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFSmur4%3D&md5=10fc8a501a4cfb535c8eb8ad4f27bf54CAS |

[4]  M. O. Andreae, Arsenic speciation in seawater and interstitial waters – influence of biological-chemical interactions on the chemistry of a trace-element. Limnol. Oceanogr. 1979, 24, 440.
Arsenic speciation in seawater and interstitial waters – influence of biological-chemical interactions on the chemistry of a trace-element.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXls1aks7g%3D&md5=b3dce3ca7bba8f50f8d60d812932660cCAS |

[5]  A. Geiszinger, W. Goessler, S. N. Pedersen, K. A. Francesconi, Arsenic biotransformation by the brown macroalga Fucus serratus. Environ. Toxicol. Chem. 2001, 20, 2255.
| 1:CAS:528:DC%2BD38XitlWitQ%3D%3D&md5=3400a479ed8508c47d37d1fdae610a86CAS |

[6]  V. Nischwitz, S. A. Pergantis, First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC-ES-MS/MS. Analyst 2005, 130, 1348.
First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC-ES-MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWhsr%2FO&md5=95521195b5c54e75a3ed10aec5232cdbCAS |

[7]  S. Khokiattiwong, N. Kornkanitnan, W. Goessler, S. Kokarnig, K. A. Francesconi, Arsenic compounds in tropical marine ecosystems: similarities between mangrove forest and coral reef. Environ. Chem. 2009, 6, 226.
Arsenic compounds in tropical marine ecosystems: similarities between mangrove forest and coral reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CjurfK&md5=182b06573132a4d1045ea9d18ecc084dCAS |

[8]  E. H. Larsen, C. R. Quétel, R. Munoz, A. Fiala-Medioni, O. F. X. Donard, Arsenic speciation in shrimp and mussel from the Mid-Atlantic hydrothermal vents. Mar. Chem. 1997, 57, 341.
Arsenic speciation in shrimp and mussel from the Mid-Atlantic hydrothermal vents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks12mt7w%3D&md5=1b86dec992d6cd9f5a9d92aa8ad34f21CAS |

[9]  V. G. Tarasov, A. V. Gebruk, A. N. Mironov, L. I. Moskalev, Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chem. Geol. 2005, 224, 5.
Deep-sea and shallow-water hydrothermal vent communities: two different phenomena?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kks7zN&md5=303a07ac1be8107e4c85b9dec5196b62CAS |

[10]  S. K. Goffredi, Indigenous ectosymbiotic bacteria associated with diverse hydrothermal vent invertebrates. Environ. Microbiol. Rep. 2010, 2, 479.
Indigenous ectosymbiotic bacteria associated with diverse hydrothermal vent invertebrates.Crossref | GoogleScholarGoogle Scholar |

[11]  K. L. Von Damm, A. M. Bray, L. G. Buttermore, S. E. Oosting, The geochemical controls on vent fluids from the Lucky Strike vent field, Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 1998, 160, 521.
The geochemical controls on vent fluids from the Lucky Strike vent field, Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1Wqtb0%3D&md5=d2cf2f7b38a4342a4562f8b48741af77CAS |

[12]  R. P. Cosson, E. Thiebaut, R. Company, M. Castrec-Rouelle, A. Colaco, I. Martins, P. M. Sarradin, M. J. Bebianno, Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus. Mar. Environ. Res. 2008, 65, 405.
Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFeltLY%3D&md5=af9ddcca5d330f8b14c17fe88f74254eCAS |

[13]  D. Desbruyères, A. Almeida, M. Biscoito, T. Comtet, A. Khripounoff, N. Le Bris, P. M. Sarradin, M. Segonzac, A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 2000, 440, 201.
A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls.Crossref | GoogleScholarGoogle Scholar |

[14]  E. Douville, J. L. Charlou, E. H. Oelkers, P. Bienvenu, C. F. J. Colon, J. P. Donval, Y. Fouquet, D. Prieur, P. Appriou, The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 2002, 184, 37.
The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsV2rt7k%3D&md5=87566b800c9165c41a243fec2fb13313CAS |

[15]  I. Martins, R. P. Cosson, V. Riou, P. M. Sarradin, J. Sarrazin, R. S. Santos, A. Colaco, Relationship between metal levels in the vent mussel Bathymodiolus azoricus and local microhabitat chemical characteristics of Eiffel Tower (Lucky Strike). Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 306.
Relationship between metal levels in the vent mussel Bathymodiolus azoricus and local microhabitat chemical characteristics of Eiffel Tower (Lucky Strike).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1eisLY%3D&md5=26246dc08b25fc5e327b3c46989e519fCAS |

[16]  N. Rousse, J. Boulegue, R. P. Cosson, A. Fiala-Medioni, Bioaccumulation of metals within the hydrothermal mytilidae Bathymodiolus sp. from the Mid-Atlantic Ridge. Oceanol. Acta 1998, 21, 597.
Bioaccumulation of metals within the hydrothermal mytilidae Bathymodiolus sp. from the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotFShtrY%3D&md5=71d2600f1495410504eab08354e452bfCAS |

[17]  L. L. Demina, S. V. Galkin, On the role of abiogenic factors in the bioaccumulation of heavy metals by the hydrothermal fauna of the Mid-Atlantic Ridge. Oceanology 2008, 48, 784.

[18]  R. R. Cave, C. R. German, J. Thomson, R. W. Nesbitt, Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2002, 66, 1905.
Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′N on the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFCktrs%3D&md5=183a0bc38dd49521859cc7c62d029fa9CAS |

[19]  E. Douville, J. L. Charlou, J. P. Donval, D. Hureau, P. Appriou, As and Sb behaviour in fluids from various deep-sea hydrothermal systems. C. R. Acad. Sci. II A 1999, 328, 97.
| 1:CAS:528:DyaK1MXktlehsbw%3D&md5=23f9fcfd32c4660c99e9e0ef7995d7e7CAS |

[20]  M. Grotti, F. Soggia, C. Lagomarsino, W. Goessler, K. A. Francesconi, Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora antarctica. Environ. Chem. 2008, 5, 171.
Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCrt7k%3D&md5=f8d7cc1390493885aac72ec621a1891aCAS |

[21]  K. A. Francesconi, Current perspectives in arsenic environmental and biological research. Environ. Chem. 2005, 2, 141.
Current perspectives in arsenic environmental and biological research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrbF&md5=67ca09c4866f036f1ca04f48ed0dc047CAS |

[22]  K. A. Francesconi, Arsenic species in seafood: origin and human health implications. Pure Appl. Chem. 2010, 82, 373.
Arsenic species in seafood: origin and human health implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVShsLg%3D&md5=004445d9072b860c2cec9a005c719d3aCAS |

[23]  R. Von Cosel, T. Comtet, E. M. Krylova, Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents on the Azores Triple Junction and the Logatchev hydrothermal field, Mid-Atlantic Ridge. Veliger 1999, 42, 218.

[24]  V. Riou, S. Halary, S. Duperron, S. Bouillon, M. Elskens, R. Bettencourt, R. S. Santos, F. Dehairs, A. Colaco, Influence of CH4 and H2S availability on symbiont distribution, carbon assimilation and transfer in the dual symbiotic vent mussel Bathymodiolus azoricus. Biogeosciences 2008, 5, 1681.
Influence of CH4 and H2S availability on symbiont distribution, carbon assimilation and transfer in the dual symbiotic vent mussel Bathymodiolus azoricus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtlyiu78%3D&md5=adb9558feadbca80472d3b5f6a4f8d9aCAS |

[25]  F. De Busserolles, J. Sarrazin, O. Gauthier, Y. Gelinas, M. C. Fabri, P. M. Sarradin, D. Desbruyères, Are spatial variations in the diets of hydrothermal fauna linked to local environmental conditions? Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 1649.
Are spatial variations in the diets of hydrothermal fauna linked to local environmental conditions?Crossref | GoogleScholarGoogle Scholar |

[26]  I. Martins, A. Colaco, P. R. Dando, I. Martins, D. Desbruyères, P. M. Sarradin, J. C. Marques, R. Serrao-Santos, Size-dependent variations on the nutritional pathway of Bathymodiolus azoricus demonstrated by a C-flux model. Ecol. Modell. 2008, 217, 59.
Size-dependent variations on the nutritional pathway of Bathymodiolus azoricus demonstrated by a C-flux model.Crossref | GoogleScholarGoogle Scholar |

[27]  V. Riou, S. Duperron, S. Halary, F. Dehairs, S. Bouillon, I. Martins, A. Colaco, R. S. Santos, Variation in physiological indicators in Bathymodiolus azoricus (Bivalvia: Mytilidae) at the Menez Gwen Mid-Atlantic Ridge deep-sea hydrothermal vent site within a year. Mar. Environ. Res. 2010, 70, 264.
Variation in physiological indicators in Bathymodiolus azoricus (Bivalvia: Mytilidae) at the Menez Gwen Mid-Atlantic Ridge deep-sea hydrothermal vent site within a year.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFWkt7s%3D&md5=1a52210945b9ffcf89460d82a4437f44CAS |

[28]  C. O. Wirsen, H. W. Jannasch, S. J. Molyneaux, Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites. J. Geophys. Res. Solid Earth 1993, 98, 9693.
Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlt1Cms74%3D&md5=568160db960c824b7e82a23861b042daCAS |

[29]  A. Colaço, F. Dehairs, D. Desbruyères, Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 395.
Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach.Crossref | GoogleScholarGoogle Scholar |

[30]  K. A. Francesconi, Complete extraction of arsenic species: a worthwhile goal? Appl. Organomet. Chem. 2003, 17, 682.
Complete extraction of arsenic species: a worthwhile goal?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFOrtLw%3D&md5=a0cf250120ded4815f9b614ca3396d28CAS |

[31]  K. A. Francesconi, D. Kuehnelt, Determination of arsenic species: a critical review of methods and applications, 2000–2003. Analyst 2004, 129, 373.
Determination of arsenic species: a critical review of methods and applications, 2000–2003.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVOkt7o%3D&md5=b0d844add49fff49c654662387f4f3d5CAS |

[32]  S. Foster, W. Maher, F. Krikowa, S. Apte, A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 2007, 71, 537.
A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFSltA%3D%3D&md5=79bfd88bddb7ba369340105d7d7f09d6CAS |

[33]  A. D. Madsen, W. Goessler, S. N. Pedersen, K. A. Francesconi, Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies. J. Anal. At. Spectrom. 2000, 15, 657.
Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslWksLY%3D&md5=2fdb16ed253759d050a8ade19c0bf70aCAS |

[34]  G. Raber, K. A. Francesconi, K. J. Irgolic, W. Goessler, Determination of ‘arsenosugars' in algae with anion-exchange chromatography and an inductively coupled plasma mass spectrometer as element-specific detector. Fresenius J. Anal. Chem. 2000, 367, 181.
Determination of ‘arsenosugars' in algae with anion-exchange chromatography and an inductively coupled plasma mass spectrometer as element-specific detector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVWrur8%3D&md5=e6024c07bd827d11bd342a392f06b10cCAS |

[35]  D. Kuehnelt, W. Goessler, K. J. Irgolic, Arsenic compounds in terrestrial organisms.2. Arsenocholine in the mushroom Amanita muscaria. Appl. Organomet. Chem. 1997, 11, 459.
Arsenic compounds in terrestrial organisms.2. Arsenocholine in the mushroom Amanita muscaria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlWksrk%3D&md5=be621b75a0b4825a1acdcf78f7bf87a4CAS |

[36]  E. Schmeisser, R. Raml, K. A. Francesconi, D. Kuehnelt, A. L. Lindberg, C. Soros, W. Goessler, Thio arsenosugars identified as natural constituents of mussels by liquid chromatography mass spectrometry. Chem. Commun. 2004, 2004, 1824.
Thio arsenosugars identified as natural constituents of mussels by liquid chromatography mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[37]  S. Miyashita, M. Shimoya, Y. Kamidate, T. Kuroiwa, O. Shikino, S. Fujiwara, K. A. Francesconi, T. Kaise, Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS. Chemosphere 2009, 75, 1065.
Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWltLk%3D&md5=4e386fe9ea1fd72695560d58ef440557CAS |

[38]  C. R. Fisher, Toward an appreciation of hydrothermal vent animals: their environment, physiological ecology, and tissue stable isotope values. Geophys. Monogr. 1995, 91, 297.
Toward an appreciation of hydrothermal vent animals: their environment, physiological ecology, and tissue stable isotope values.Crossref | GoogleScholarGoogle Scholar |

[39]  A. V. Gebruk, E. C. Southward, H. Kennedy, A. J. Southward, Food sources, behaviour, and distribution of hydrothermal vent shrimps at the Mid-Atlantic Ridge. J. Mar. Biol. Assoc. U.K. 2000, 80, 485.
Food sources, behaviour, and distribution of hydrothermal vent shrimps at the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtl2rt7s%3D&md5=5347b03e741fe0431e33bc089d8ea3b6CAS |

[40]  M. F. Polz, J. J. Robinson, C. M. Cavanaugh, C. L. Van Dover, Trophic ecology of massive shrimp aggregations at a Mid-Atlantic Ridge hydrothermal vent site. Limnol. Oceanogr. 1998, 43, 1631.
Trophic ecology of massive shrimp aggregations at a Mid-Atlantic Ridge hydrothermal vent site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFSg&md5=15d1b3af9da60282fb196db2f5db80c4CAS |

[41]  D. C. Bergquist, J. T. Eckner, I. A. Urcuyo, E. E. Cordes, S. Hourdez, S. A. Macko, C. R. Fisher, Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Mar. Ecol. Prog. Ser. 2007, 330, 49.
Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web.Crossref | GoogleScholarGoogle Scholar |

[42]  L. L. Demina, N. G. Holm, S. V. Galkin, A. Y. Lein, Concentration function of the deep-sea vent benthic organisms. Cah. Biol. Mar. 2010, 51, 369.

[43]  C. L. Van Dover, B. Fry, Stable isotopic compositions of hydrothermal vent organisms. Mar. Biol. 1989, 102, 257.
Stable isotopic compositions of hydrothermal vent organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltleju7g%3D&md5=13c404cc8b2632b8b29e962bf0777b70CAS |

[44]  F. Geret, R. Riso, P. M. Sarradin, J. C. Caprais, R. P. Cosson, Metal bioaccumulation and storage forms in the shrimp, Rimicaris exoculata, from the Rainbow hydrothermal field (Mid-Atlantic Ridge); preliminary approach to the fluid-organism relationship. Cah. Biol. Mar. 2002, 43, 43.

[45]  E. H. Larsen, G. Pritzl, S. H. Hansen, Arsenic speciation in seafood samples with emphasis on minor constituents – an investigation using high-performance liquid-chromatography with detection by inductively coupled plasma-mass spectrometry. J. Anal. At. Spectrom. 1993, 8, 1075.
Arsenic speciation in seafood samples with emphasis on minor constituents – an investigation using high-performance liquid-chromatography with detection by inductively coupled plasma-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1ajtrw%3D&md5=c1b2b40b8c3fbea53945fe1d39b19d54CAS |

[46]  K. A. Francesconi, D. A. Hunter, B. Bachmann, G. Raber, W. Goessler, Uptake and transformation of arsenosugars in the shrimp Crangon crangon. Appl. Organomet. Chem. 1999, 13, 669.
Uptake and transformation of arsenosugars in the shrimp Crangon crangon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslelu78%3D&md5=79d79c60ee7dab7c6567e604aa05d2acCAS |

[47]  J. Meier, N. Kienzl, W. Goessler, K. A. Francesconi, The occurrence of thio-arsenosugars in some samples of marine algae. Environ. Chem. 2005, 2, 304.
The occurrence of thio-arsenosugars in some samples of marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12gt7zO&md5=b4f2ffad10f90c18651aa93a8d557749CAS |

[48]  V. Nischwitz, K. Kanaki, S. A. Pergantis, Mass spectrometric identification of novel arsinothioyl-sugars in marine bivalves and algae. J. Anal. At. Spectrom. 2006, 21, 33.
Mass spectrometric identification of novel arsinothioyl-sugars in marine bivalves and algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCiurvM&md5=00626cd2e92e4bd1d501b73af8b93fe2CAS |

[49]  C. Soeroes, W. Goessler, K. A. Francesconi, E. Schmeisser, R. Raml, N. Kienzl, M. Kahn, P. Fodor, D. Kuehnelt, Thio arsenosugars in freshwater mussels from the Danube in Hungary. J. Environ. Monit. 2005, 7, 688.
Thio arsenosugars in freshwater mussels from the Danube in Hungary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsF2htL0%3D&md5=9c07dd291db776592c0d0633b46699b6CAS |

[50]  R. Schaeffer, K. A. Francesconi, N. Kienzl, C. Soeroes, P. Fodor, L. Varadi, R. Raml, W. Goessler, D. Kuehnelt, Arsenic speciation in freshwater organisms from the river Danube in Hungary. Talanta 2006, 69, 856.
Arsenic speciation in freshwater organisms from the river Danube in Hungary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVWiurw%3D&md5=408e210130ce18a6ed6fde1ae04861f6CAS |

[51]  M. Winter, WebElements 2011 (The University of Sheffield and WebElements Ltd, UK). Available at http://www.webelements.com/arsenic/geology.html [verified 21 March 2012].

[52]  K. A. Francesconi, J. S. Edmonds, Arsenic species in marine samples. Croat. Chem. Acta 1998, 71, 343.
| 1:CAS:528:DyaK1cXjvFWrt7o%3D&md5=d3c1133460579d272385b03e23b411ddCAS |

[53]  L. A. Murray, A. Raab, I. L. Marr, J. Feldmann, Biotransfonnation of arsenate to arsenosugars by Chlorella vulgaris. Appl. Organomet. Chem. 2003, 17, 669.
Biotransfonnation of arsenate to arsenosugars by Chlorella vulgaris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFOrtL4%3D&md5=00f756f5d5afad289c14fd149b72e26bCAS |

[54]  T. Llorente-Mirandes, M. J. Ruiz-Chancho, M. Barbero, R. Rubio, J. F. Lopez-Sanchez, Measurement of arsenic compounds in littoral zone algae from the western Mediterranean Sea occurrence of arsenobetaine. Chemosphere 2010, 81, 867.
Measurement of arsenic compounds in littoral zone algae from the western Mediterranean Sea occurrence of arsenobetaine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Omt7jI&md5=c12dcc18842a8ef40d1cb4496fa902a6CAS |

[55]  L. A. Clowes, K. A. Francesconi, Uptake and elimination of arsenobetaine by the mussel Mytilus edulis is related to salinity. Comp. Biochem. Phys. C Pharmacol. Toxicol. Endocrinol. 2004, 137, 35.
Uptake and elimination of arsenobetaine by the mussel Mytilus edulis is related to salinity.Crossref | GoogleScholarGoogle Scholar |

[56]  K. A. Francesconi, J. Gailer, J. S. Edmonds, W. Goessler, K. J. Irgolic, Uptake of arsenic-betaines by the mussel Mytilus edulis. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1999, 122, 131.
Uptake of arsenic-betaines by the mussel Mytilus edulis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3gs1Sgtw%3D%3D&md5=59156085c020fca9b713bcdfd21f70ccCAS |

[57]  K. A. Francesconi, W. Goessler, S. Panutrakul, K. J. Irgolic, A novel arsenic containing riboside (arsenosugar) in three species of gastropod. Sci. Total Environ. 1998, 221, 139.
A novel arsenic containing riboside (arsenosugar) in three species of gastropod.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFygtrc%3D&md5=c753f8b7290a4cde13717ff819e0b8a5CAS |

[58]  J. Kirby, W. Maher, A. Chariton, F. Krikowa, Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia. Appl. Organomet. Chem. 2002, 16, 192.
Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Kktbg%3D&md5=94dfb6a457fc5149a0b735971dc53398CAS |

[59]  S. Foster, W. Maher, A. Taylor, F. Krikowa, K. Telford, Distribution and speciation of arsenic in temperate marine saltmarsh ecosystems. Environ. Chem. 2005, 2, 177.
Distribution and speciation of arsenic in temperate marine saltmarsh ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrfK&md5=4b1f2f34c4d36ab9564310e93a60b01dCAS |