Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

A kinetic investigation of unimolecular reactions involving trace metals at post-combustion flue gas conditions

Jennifer Wilcox
+ Author Affiliations
- Author Affiliations

Department of Energy Resources Engineering, School of Earth Sciences, Stanford University, Green Earth Sciences 065, 367 Panama Street, Stanford, CA 94305, USA. Email: wilcoxj@stanford.edu

Environmental Chemistry 8(2) 207-212 https://doi.org/10.1071/EN11001
Submitted: 4 January 2011  Accepted: 3 March 2011   Published: 2 May 2011

Environmental context. Understanding trace metal speciation in coal combustion flue gases is imperative to the design of effective capture technologies to prevent their release into the atmosphere. Unfortunately much of the kinetics that dictate trace metal speciation are not known and the current study focuses for the first time on the kinetics for three reactions involving mercury and one involving selenium. Rate constant expressions are provided over a broad temperature range (i.e. 298–2000 K), indicative of post-combustion flue gas conditions.

Abstract. Ab-initio methods were carried out to calculate forward and reverse rate constant data for the following reactions: Hg + Cl2 ↔ HgCl2, HgCl + Cl ↔ HgCl2, Hg + O ↔ HgO, and Se + H2 ↔ SeH2. Theoretical predictions of bond distances, vibrational frequencies and enthalpies of reaction are compared to available experimental data to determine the level of theory most appropriate for predicting kinetic parameters. The pseudopotentials ECP60MDF and RECP60VDZ were used for mercury in combination with B3LYP or QCISD(T) methods whereas the complete 6–311++G(3df,3pd) Pople basis set with the CCSD(T) method was used for selenium. Potential energy curves for each reaction were constructed and a variational approach along with RRKM theory was used to predict rate constants from 298 to 2000 K. Reactions HgCl + Cl ↔ HgCl2 and Hg + O ↔ HgO were found to have a strong negative temperature dependence, whereas the insertion reactions Hg + Cl2 ↔ HgCl2 and Se + H2 ↔ SeH2 were found to proceed very slowly with large pre-exponential factors.


References

[1]  M. H. Keating, Mercury study report to congress. Volume II: Inventory of anthropogenic mercury emissions in the United States 1997 (US Environmental Protection Agency, Office of Air Quality Planning and Standards).

[2]  F. Slemr, G. Schuster, W. Seiler, Distribution, speciation, and budget of atmospheric mercury J. Atmos. Chem. 1985, 3, 407.
Distribution, speciation, and budget of atmospheric mercuryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit12ltbs%3D&md5=5fbae90176ffabe3c230bf136c4db7faCAS |

[3]  A. W. Andren, D. H. Klein, Selenium in coal-fired steam plant emissions Environ. Sci. Technol. 1975, 9, 856.
Selenium in coal-fired steam plant emissionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XosFCj&md5=e327a6860a9b2737fdf078acf4be2212CAS |

[4]  M. Diaz-Somoano, M. R. Martinez-Tarazona, Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas Environ. Sci. Technol. 2004, 38, 899.
Retention of arsenic and selenium compounds using limestone in a coal gasification flue gasCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFSisrg%3D&md5=c0019b1c53622d7aaa9302b092ec05f3CAS | 14968880PubMed |

[5]  R. Agnihotri, S. Chauk, S. Mahuli, L.-S. Fan, Selenium removal using Ca-based sorbents: reaction kinetics Environ. Sci. Technol. 1998, 32, 1841.
Selenium removal using Ca-based sorbents: reaction kineticsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVartrg%3D&md5=01eb2e3d6fcf8453f45bb0d60946101cCAS |

[6]  N. C. Widmer, J. A. Cole, W. R. Seeker, J. A. Gaspar, Practical limitation of mercury speciation in simulated municipal waste incinerator flue gas Combust. Sci. Tech. 1998, 134, 315.
Practical limitation of mercury speciation in simulated municipal waste incinerator flue gasCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislKmtL8%3D&md5=bc0f9bcfd55460a6ba5da6e12eae4df3CAS |

[7]  S. E. Olson, C. R. Crocker, S. E. Benson, J. H. Pavlish, M. J. Holmes, Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases J. Air Waste Manage. Assoc. 2005, 55, 747.
| 1:CAS:528:DC%2BD2MXlvFKru7o%3D&md5=eedc295d3edc9eb190e33ce3f90fc478CAS |

[8]  R. N. Sliger, J. C. Kramlich, N. M. Marinov, Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species Fuel Process. Technol. 2000, 65–66, 423.
Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine speciesCrossref | GoogleScholarGoogle Scholar |

[9]  C. L. Senior, A. F. Sarofim, T. Zeng, J. J. Helble, R. Mamani-Paco, Gas-phase transformations of mercury in coal-fired power plants Fuel Process. Technol. 2000, 63, 197.
Gas-phase transformations of mercury in coal-fired power plantsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1yrtrY%3D&md5=95e9f09b2c9ec6edf94ac18aee485d72CAS |

[10]  J. Wilcox, J. Robles, D. C. J. Marsden, P. Blowers, Theoretically predicted rate constants for mercury oxidation by hydrogen chloride in coal combustion flue gases Environ. Sci. Technol. 2003, 37, 4199.
Theoretically predicted rate constants for mercury oxidation by hydrogen chloride in coal combustion flue gasesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1eisLg%3D&md5=a6fbeb69dcfda6217ad22c5153368e6bCAS | 14524453PubMed |

[11]  J. Wilcox, D. C. J. Marsden, P. Blowers, Evaluation of basis sets and theoretical methods for estimating rate constants of mercury oxidation reactions involving chlorine Fuel Process. Technol. 2004, 85, 391.
Evaluation of basis sets and theoretical methods for estimating rate constants of mercury oxidation reactions involving chlorineCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlajtrc%3D&md5=969f367df8c838c26eec20dbd3d1d8ccCAS |

[12]  J. Wilcox, A Kinetic Investigation of high-temperature mercury oxidation by chlorine J. Phys. Chem. A 2009, 113, 6633.
A Kinetic Investigation of high-temperature mercury oxidation by chlorineCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVegtLo%3D&md5=2c7585bb4d847162250a441d50f6a6aaCAS | 19469508PubMed |

[13]  B. Krishnakumar, J. J. Helble, Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanisms Environ. Sci. Technol. 2007, 41, 7870.
Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanismsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFehu7fM&md5=a7ea65bc26ea1df35d640d558e081c21CAS | 18075101PubMed |

[14]  R. Yan, D. Gauthier, G. Flamant, Possible interactions between As, Se, and Hg during coal combustion Combust. Flame 2000, 120, 49.
Possible interactions between As, Se, and Hg during coal combustionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsF2hur4%3D&md5=5a394349ce32ce47ade3c9224f553990CAS |

[15]  M. P. Pavageau, A. Morin, F. Seby, C. Guimon, E. Krupp, C. Pecheyran, J. Poulleau, O. F. X. Donard, Partitioning of metal species during an enriched fuel combustion experiment. Speciation in the gaseous and particulate phases Environ. Sci. Technol. 2004, 38, 2252.
Partitioning of metal species during an enriched fuel combustion experiment. Speciation in the gaseous and particulate phasesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsl2hsro%3D&md5=04c1720c36bdd06e7dc1af0092c7c74fCAS | 15112832PubMed |

[16]  R. Yan, D. Gauthier, G. Flamant, G. Peraudeau, Fate of selenium in coal combustion: volatilization and speciation in the flue gas Environ. Sci. Technol. 2001, 35, 1406.
Fate of selenium in coal combustion: volatilization and speciation in the flue gasCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsV2nurY%3D&md5=8f10a4081bc17c957274d176fc85b2cbCAS | 11348075PubMed |

[17]  D. Urban, J. Wilcox, A theoretical study of properties and reactions involving arsenic and selenium compounds present in coal combustion flue gases J. Phys. Chem. A 2006, 110, 5847.
A theoretical study of properties and reactions involving arsenic and selenium compounds present in coal combustion flue gasesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjtlartrk%3D&md5=96c44aafb456c9ab50082db5441252d9CAS | 16640380PubMed |

[18]  M. T. Monahan-Pendergast, M. Przybvlek, M. Lindblad, J. Wilcox, Theoretical predictions of arsenic and selenium species under atmospheric conditions Atmos. Environ. 2008, 42, 2349.
Theoretical predictions of arsenic and selenium species under atmospheric conditionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFOhs7c%3D&md5=71c34e9947a804ce600c669f442cfcecCAS |

[19]  J. Wilcox, P. Blowers, Decomposition of mercuric chloride and application to combustion flue gases Environ. Chem. 2004, 1, 166.
Decomposition of mercuric chloride and application to combustion flue gasesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2ntg%3D%3D&md5=f73f02ad57f54aa43d63000580b7356dCAS |

[20]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02 2004 (Gaussian, Inc.: Wallingford, CT).

[21]  W. J. Stevens, M. Krauss, Relativistic compact effective core potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms Can. J. Chem. 1992, 70, 612.
Relativistic compact effective core potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atomsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlOru7g%3D&md5=253675733b16a5c0501cf6f16acf07e7CAS |

[22]  D. Figgen, G. Rauhut, M. Dolg, H. Stoll, Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data Chem. Phys. 2005, 311, 227.
Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock dataCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2hurs%3D&md5=3f4b4b0bc6ed6358c6663aa609fe16bdCAS |

[23]  R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys. 1980, 72, 650.
Self-consistent molecular orbital methods. XX. A basis set for correlated wave functionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXpvFyitA%3D%3D&md5=487e68a37b320141e7c96ea65b94dd09CAS |

[24]  K. A. Holbrook, M. J. Pilling, S. H. Robertson, Unimolecular Reactions, 2nd edn 1996 (Wiley: Chichester, UK).

[25]  K. J. Laidler, Chemical Kinetics, 3rd edn 1987 (Harper and Row: New York).

[26]  T. Beyer, D. F. Swinehart, Algoritm 448. Number of multiple-restricted partitions. Commun. ACM 1973, 16, 379[A1]10.1145/362248.362275

[27]  J. Tellinghuisen, J. G. Ashmore, The B → X transition in 200Hg79Br Appl. Phys. Lett. 1982, 40, 867.
The B → X transition in 200Hg79BrCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktFCgs7s%3D&md5=47173a751fccd6c9196e7a6b16ab7939CAS |

[28]  A. A. Malt’sev, G. K. Selivanov, V. I. Yampolsky, N. I. Zavalishin, Far infrared absorption spectra of mercury dihalide vapours Nat. Phys. Sci. 1971, 231, 157.
| 1:CAS:528:DyaE3MXksFGqt7w%3D&md5=b2d14b77f8a681217fcb97d0c4360692CAS |

[29]  B. J. Aylett, Comprehensive Inorganic Chemistry 1973 (Pergamon Press: New York).

[30]  S. Bell, R. D. McKenzie, J. B. Coon, The spectrum of HgCl2 in the vacuum ultraviolet J. Mol. Spectrosc. 1966, 20, 217.
The spectrum of HgCl2 in the vacuum ultravioletCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XksVeqtrk%3D&md5=3642a475e9e43b6e7510ce43f4ea2506CAS |

[31]  D. M. Adams, D. J. Hill, Single-crystal infrared study and assignment for mercury(II) chloride and bromide J. Chem. Soc., Dalton Trans. 1978, 776.
Single-crystal infrared study and assignment for mercury(II) chloride and bromideCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlvVyhsbo%3D&md5=9458ff54043e2cecd2b3eb967dd9078cCAS |

[32]  M. W. Chase, Jr, C. A. Davies, J. R. Downey, D. J. Fruirip, R. A. McDonald, A. N. Syverud, JANAF thermochemical tables – 3rd edition. 2. J. Phys. Chem. Ref. Data 1985, 14(Suppl. 2), 927.

[33]  R. A. Hill, T. H. Edwards, Vibrational analysis and isotope effects in hydrogen selenide J. Chem. Phys. 1965, 42, 1391.
Vibrational analysis and isotope effects in hydrogen selenideCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXktFWrtQ%3D%3D&md5=c25c9c2792a0796631cfd1d5baef2f90CAS |

[34]  M. Kaupp, H. G. von Schnering, Origin of the unique stability of condensed-phase Hg22+. An ab initio investigation of MI and MII species (M = Zn, Cd, Hg) Inorg. Chem. 1994, 33, 4179.
Origin of the unique stability of condensed-phase Hg22+. An ab initio investigation of MI and MII species (M = Zn, Cd, Hg)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsVahsrw%3D&md5=9825849893e5c28aa7b046d01410044fCAS |

[35]  D. Strömberg, A. Strömberg, U. Wahlgren, Relativistic quantum calculations on some mercury sulfide molecules Water Air Soil Pollut. 1991, 56, 681.
Relativistic quantum calculations on some mercury sulfide moleculesCrossref | GoogleScholarGoogle Scholar |

[36]  T. R. Cundari, A. Yoshikawa, Computational study of methane activation by mercury(II) complexes J. Comput. Chem. 1998, 19, 902.
Computational study of methane activation by mercury(II) complexesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt12mt7k%3D&md5=b16f25970b4ef150509867ed6efa4211CAS |

[37]  D. Strömberg, O. Gropen, U. Wahlgren, Non-relativistic and relativistic calculations on some Zn, Cd, and Hg complexes Chem. Phys. 1989, 133, 207.
Non-relativistic and relativistic calculations on some Zn, Cd, and Hg complexesCrossref | GoogleScholarGoogle Scholar |

[38]  S. Šćavničar, D. Grdenić, The crystal structure of oxy-mercuric-mercurous chloride Acta Crystallogr. 1955, 8, 275.
The crystal structure of oxy-mercuric-mercurous chlorideCrossref | GoogleScholarGoogle Scholar |

[39]  M. J. S. Dewar, C. Jie, AM1 calculations for compounds containing mercury Organometallics 1989, 8, 1547.
AM1 calculations for compounds containing mercuryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitlOhtbw%3D&md5=10d33cc3fd6e79defd13cdb9de7dea04CAS |

[40]  D. Strömberg, O. Gropen, U. Wahlgren, Non-relativistic and relativistic calculations on some zinc, cadmium, and mercury complexes Chem. Phys. 1989, 133, 207.
Non-relativistic and relativistic calculations on some zinc, cadmium, and mercury complexesCrossref | GoogleScholarGoogle Scholar |

[41]  J. A. Tossell, Calculation of the energetics for oxidation of gas-phase elemental Hg by Br and BrO J. Phys. Chem. A 2003, 107, 7804.
Calculation of the energetics for oxidation of gas-phase elemental Hg by Br and BrOCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVGgsrw%3D&md5=bb11728b335ad872409c354a348632ebCAS |

[42]  B. C. Shepler, K. A. Peterson, Mercury monoxide: a systematic investigation of its ground electronic state J. Phys. Chem. A 2003, 107, 1783.
Mercury monoxide: a systematic investigation of its ground electronic stateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlWis7Y%3D&md5=05069d0247eff9f1931443325eac3fd8CAS |

[43]  S. T. Gibson, J. P. Greene, J. Berkowitz, A photoionization study of SeH and H2Se J. Chem. Phys. 1986, 85, 4815.
A photoionization study of SeH and H2SeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtFKjurk%3D&md5=44b85e49b0ef98291e39fce5ac47e907CAS |