Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Reduced sulfur accumulation in salinised sediments

Kerry L. Whitworth A B and Darren S. Baldwin B C D
+ Author Affiliations
- Author Affiliations

A La Trobe University, University Drive, Wodonga, VIC 3690, Australia.

B Murray–Darling Freshwater Research Centre, PO Box 991, Wodonga, VIC 3689, Australia.

C CSIRO Land and Water, PO Box 991, Wodonga, VIC 3689, Australia.

D Corresponding author. Email: darren.baldwin@csiro.au

Environmental Chemistry 8(2) 198-206 https://doi.org/10.1071/EN10103
Submitted: 15 September 2010  Accepted: 10 March 2011   Published: 2 May 2011

Environmental context. The accumulation of reduced sulfur compounds following salinisation is an emerging risk to inland waterways. Disturbance of these materials can lead to acidification, mobilisation of heavy metals and oxygen depletion. Knowledge of the rates of reduced sulfur accumulation in salinised waterways and the speciation of the reduced sulfur products is crucial for effective management of aquatic ecosystems.

Abstract. The accumulation of reduced sulfur species in the sediments of salinised inland waterways poses a serious environmental risk to many historically freshwater environments. Here the effects of salinity (and associated sulfate concentration), organic carbon load and temperature on reduced sulfur accumulation and speciation in closed microcosms containing sediments from a wetland that had not previously been salinised are examined. At conductivities of up to 10 000 µS cm–1, extant sediment carbon was sufficient to allow reduction of the entire sulfate load. Sulfate reduction was carbon limited at higher salinities. The rate of sulfate reduction approximately tripled with an increase in temperature from 20 to 30°C. Speciation studies showed that elemental sulfur and an unidentified sulfur species – probably reduced organic sulfur – were the dominant reduced sulfur species present during the early stages of sulfate reduction. By the end of the incubation period (226 days), reactive forms of S (elemental sulfur and acid-volatile sulfide) dominated. In the low conductivity treatments (0 and 1000 µS cm–1) reduced sulfur was approximately equally distributed between the two forms; acid volatile sulfide comprised ~75% of the reduced sulfur at higher salinities. Formation of less reactive di-sulfide minerals was inconsequential over the timescale of this experiment.

Additional keywords: acid sulfate soils, salt, sulfate reduction, sulfur speciation, wetland.


References

[1]  F. Ghassemi, A. J. Jakeman, H. A. Nix, Salinisation of Land and Water Resources: Human Causes, Extent, Management and Case Studies 1995 (CABI Publishing: Wallingford, UK).

[2]  I. D. Jolly, K. L. McEwan, K. L. Holland, A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology 2008, 1, 43.
A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yisLzL&md5=4943154f10b3b47318948137fae35549CAS |

[3]  UNESCO Water for People, Water for Life 2003 (UNESCO Publishing, Berghahn Books: New York).

[4]  A. L. Herczeg, S. S. Dogramaci, F. W. J. Leaney, Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Mar. Freshwater Res. 2001, 52, 41.
Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1SjtLw%3D&md5=d4bb7a94fcfe0aa52bea698cad3dc340CAS |

[5]  M. Holmer, P. Storkholm, Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw. Biol. 2001, 46, 431.
Sulphate reduction and sulphur cycling in lake sediments: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslSmsb4%3D&md5=1d28aa3c2d82f3611d1463df4e820bcfCAS |

[6]  D. L. Nielsen, M. A. Brock, G. N. Rees, D. S. Baldwin, Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 2003, 51, 655.
Effects of increasing salinity on freshwater ecosystems in Australia.Crossref | GoogleScholarGoogle Scholar |

[7]  K. C. Hall, D. S. Baldwin, G. N. Rees, A. J. Richardson, Distribution of inland wetlands with sulfidic sediments in the Murray–Darling Basin, Australia. Sci. Total Environ. 2006, 370, 235.
Distribution of inland wetlands with sulfidic sediments in the Murray–Darling Basin, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvF2ns70%3D&md5=3c2a0a801fe0c7363452a14d804c2e84CAS | 16930680PubMed |

[8]  S. Lamontagne, W. S. Hicks, R. W. Fitzpatrick, S. Rogers, Sulfidic materials in dryland river wetlands. Mar. Freshwater Res. 2006, 57, 775.
Sulfidic materials in dryland river wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OgsLfL&md5=2f1573e3f5e12f977b398451e1974ce0CAS |

[9]  R. M. Joeckel, B. J. A. Clement, Soils, surficial geology, and geomicrobiology of saline-sodic wetlands, North Platte River Valley, Nebraska, USA. Catena 2005, 61, 63.
Soils, surficial geology, and geomicrobiology of saline-sodic wetlands, North Platte River Valley, Nebraska, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivV2ksro%3D&md5=b0f3c548b94e95593fa4ae529f876ee0CAS |

[10]  F. E. Dierberg, T. A. DeBusk, N. R. Larson, M. D. Kharbanda, N. Chan, M. C. Gabriel, Effects of sulfate amendments on mineralization and phosphorus release from south Florida (USA) wetland soils under anaerobic conditions. Soil Biol. Biochem. 2011, 43, 31.
Effects of sulfate amendments on mineralization and phosphorus release from south Florida (USA) wetland soils under anaerobic conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGrs73K&md5=36e8dfb1de80b4d64d8e3aa59db0725fCAS |

[11]  L. P. M. Lamers, G. E. Ten Dolle, S. T. G. Van den Berg, S. P. J. Van Delft, J. G. M. Roelofs, Differential responses of freshwater wetland soils to sulphate pollution. Biogeochemistry 2001, 55, 87.
Differential responses of freshwater wetland soils to sulphate pollution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvV2ru7g%3D&md5=cc11db51cb4463ccb2ba1a0c21fae1e6CAS |

[12]  S. G. Johnston, P. G. Slavich, L. A. Sullivan, P. Hirst, Artificial drainage of floodwaters from sulfidic backswamps: effects on deoxygenation in an Australian estuary. Mar. Freshwater Res. 2003, 54, 781.
Artificial drainage of floodwaters from sulfidic backswamps: effects on deoxygenation in an Australian estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVGmtbY%3D&md5=ea6e06b5174e9d2f79d0bd743b3f628bCAS |

[13]  E. D. Burton, R. T. Bush, L. A. Sullivan, Acid-volatile sulfide oxidation in coastal flood plain drains: iron–sulfur cycling and effects on water quality. Environ. Sci. Technol. 2006, 40, 1217.
Acid-volatile sulfide oxidation in coastal flood plain drains: iron–sulfur cycling and effects on water quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1OgtQ%3D%3D&md5=6b918f6a26b8ac8c3ac7ed6d684c7639CAS | 16572778PubMed |

[14]  F. Glover, K. L. Whitworth, P. Kappen, D. S. Baldwin, G. N. Rees, J. A. Webb, E. Silvester, Acidification and buffering mechanisms in acid sulfate soil wetlands of the Murray–Darling Basin, Australia. Environ. Sci. Technol. 2011, 45, 2591.
Acidification and buffering mechanisms in acid sulfate soil wetlands of the Murray–Darling Basin, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislGnu74%3D&md5=3546c992ca080d70fd6c36af8340d9c8CAS | 21375259PubMed |

[15]  B. McCarthy, A. Conallin, P. D’Santos, D. Baldwin, Acidification, salinization and fish kills at an inland wetland in south-eastern Australia following partial drying. Ecol. Manage. Restor. 2006, 7, 218.
Acidification, salinization and fish kills at an inland wetland in south-eastern Australia following partial drying.Crossref | GoogleScholarGoogle Scholar |

[16]  S. L. Simpson, R. W. Fitzpatrick, P. Shand, B. M. Angel, D. A. Spadaro, L. Mosley, Climate-driven mobilisation of acid and metals from acid sulfate soils. Mar. Freshwater Res. 2010, 61, 129.
Climate-driven mobilisation of acid and metals from acid sulfate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Snsb0%3D&md5=5616063b104275deeb53e0e9294533f3CAS |

[17]  S. J. Appleyard, J. Angeloni, R. Watkins, Arsenic-rich groundwater in an urban area experiencing drought and increasing population density, Perth, Australia. Appl. Geochem. 2006, 21, 83.
Arsenic-rich groundwater in an urban area experiencing drought and increasing population density, Perth, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWqtL%2FP&md5=db5b9e7428301999b503595993576ba0CAS |

[18]  D. S. Baldwin, M. Fraser, Rehabilitation options for inland waterways impacted by sulfidic sediments – a synthesis. J. Environ. Manage. 2009, 91, 311.
Rehabilitation options for inland waterways impacted by sulfidic sediments – a synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFGhsg%3D%3D&md5=08a412d62e289c055d9cd9def7bd34b5CAS | 19906482PubMed |

[19]  A. S. Kinsela, J. K. Reynolds, M. D. Melville, Agricultural acid sulfate soils: a potential source of volatile sulfur compounds? Environ. Chem. 2007, 4, 18.
Agricultural acid sulfate soils: a potential source of volatile sulfur compounds?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1yqsrY%3D&md5=2d72cc4c4033ffe5fe5c0c9ffc897ec3CAS |

[20]  W. Hicks, S. Lamontange, A Guide to Sulfur Gas Emissions from Wetlands and Disposal Basins: Implications for Salinity Management 2006, CSIRO Land and Water Scientific Report 37-06 (CSIRO: Canberra).

[21]  F. Widdel, Microbiology and ecology of sulfate- and sulfur-reducing bacteria, in Biology of Anaerobic Microorganisms (Ed. A. J. B. Zehnder) 1998, pp. 469–585 (Wiley: New York).

[22]  A. J. Pyzik, S. E. Sommer, Sedimentary iron monosulfides – kinetics and mechanism of formation. Geochim. Cosmochim. Acta 1981, 45, 687.
Sedimentary iron monosulfides – kinetics and mechanism of formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkvVeqtL8%3D&md5=a8610a8990ff777077e19a43df2dbd2aCAS |

[23]  J. A. Howitt, D. S. Baldwin, G. N. Rees, J. L. Williams, Modelling blackwater: predicting water quality during flooding of lowland river forests. Ecol. Modell. 2007, 203, 229.
Modelling blackwater: predicting water quality during flooding of lowland river forests.Crossref | GoogleScholarGoogle Scholar |

[24]  APHA Standard Methods for the Examination of Water and Wastewater, 21st edn 2005 (American Public Health Association: Washington, DC).

[25]  D. Rickard, J. W. Morse, Acid volatile sulfide (AVS). Mar. Chem. 2005, 97, 141.
Acid volatile sulfide (AVS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2qurrI&md5=76ec4455dc82214a864c4fb70a77fe9aCAS |

[26]  Y. P. Hsieh, S. W. Chung, Y. J. Tsau, C. T. Sue, Analysis of sulfides in the presence of ferric minerals by diffusion methods. Chem. Geol. 2002, 182, 195.
Analysis of sulfides in the presence of ferric minerals by diffusion methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSltL0%3D&md5=15a1653491ad11f6bc1285a71eec03dfCAS |

[27]  E. D. Burton, R. T. Bush, L. A. Sullivan, R. K. Hocking, D. R. G. Mitchell, S. G. Johnston, R. W. Fitzpatrick, M. Raven, S. McClure, L. Y. Jang, Iron-monosulfide oxidation in natural sediments: resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions. Environ. Sci. Technol. 2009, 43, 3128.
Iron-monosulfide oxidation in natural sediments: resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKktLo%3D&md5=7ff9ee8e80319f418e0befcaf481ff3eCAS | 19534124PubMed |

[28]  E. Henneke, G. W. Luther, G. J. de Lange, J. Hoefs, Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea. Geochim. Cosmochim. Acta 1997, 61, 307.
Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVGlsL4%3D&md5=916db13a26cfea625b47aebc00ddeb82CAS |

[29]  S. S. Dogramaci, A. L. Herczeg, S. L. Schiff, Y. Bone, Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes. Appl. Geochem. 2001, 16, 475.
Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFelsLY%3D&md5=753700241daee2d4b3ebf922f70a0ef3CAS |

[30]  N. MacKay, T. Hillman, J. Rolls, Water Quality of the River Murray 1988 (Murray Darling Basin Commission: Canberra).

[31]  M. F. Kirk, E. E. Roden, L. J. Crossey, A. J. Brearley, M. N. Spilde, Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors. Geochim. Cosmochim. Acta 2010, 74, 2538.
Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFSnsbs%3D&md5=75e061fb19477a63718d997d211b8297CAS |

[32]  J. P. Werne, T. W. Lyons, D. J. Hollander, M. J. Formolo, J. S. S. Damste, Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation. Chem. Geol. 2003, 195, 159.
Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVGlsbs%3D&md5=47ca39c7fb06bfb80f25b2ccfb216286CAS |

[33]  D. Rickard, G. W. Luther, Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125°C: the mechanism. Geochim. Cosmochim. Acta 1997, 61, 135.
Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125°C: the mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXptVynug%3D%3D&md5=4f0d95d1d111d72a49a40c162e75557dCAS |

[34]  E. D. Burton, R. T. Bush, L. A. Sullivan, Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes. Environ. Sci. Technol. 2006, 40, 888.
Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCgsrvF&md5=2a4e4895d02e4d9a3c51e9fcb5c7d154CAS | 16509333PubMed |

[35]  G. N. Rees, D. S. Baldwin, G. O. Watson, K. C. Hall, Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. Sci. Total Environ. 2010, 409, 134.
Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2lt7%2FL&md5=cfa8602b6ad32902fb3c30ca77397821CAS | 20934202PubMed |

[36]  S. W. Poulton, M. D. Krom, R. Raiswell, A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 2004, 68, 3703.
A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Cns70%3D&md5=1ea3c3f2c1a11fc753cb3a7dbbc8801eCAS |

[37]  B. Thamdrup, H. Fossing, B. B. Jørgensen, Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 1994, 58, 5115.
Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXislWnsbY%3D&md5=8c1685bcc5aad22b4e716952e32b5fb8CAS |

[38]  A. J. Burgin, S. K. Hamilton, NO3–-driven SO42– production in freshwater ecosystems: implications for N and S cycling. Ecosystems 2008, 11, 908.
NO3-driven SO42– production in freshwater ecosystems: implications for N and S cycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKktLjN&md5=747c29ff8a735ef49228e4be6dea0328CAS |

[39]  S. Hunger, L. G. Benning, Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem. Trans. 2007, 8, 1.
Greigite: a true intermediate on the polysulfide pathway to pyrite.Crossref | GoogleScholarGoogle Scholar | 17376247PubMed |

[40]  A. Vairavamurthy, K. Mopper, Geochemical formation of organosulfur compounds (thiols) by addition of H2S to sedimentary organic-matter. Nature 1987, 329, 623.
Geochemical formation of organosulfur compounds (thiols) by addition of H2S to sedimentary organic-matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtVamt7o%3D&md5=d6f16a312fbc58db42397fb9ec8759edCAS |

[41]  M. E. L. Kohnen, J. S. S. Damsté, H. L. ten Haven, J. W. de Leeuw, Early incorporation of polysulfides in sedimentary organic-matter. Nature 1989, 341, 640.
Early incorporation of polysulfides in sedimentary organic-matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXht1antbo%3D&md5=2eb7b7925d8751472da093589964507fCAS |

[42]  J. P. Werne, T. W. Lyons, D. J. Hollander, S. Schouten, E. C. Hopmans, J. S. S. Damsté, Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis. Geochim. Cosmochim. Acta 2008, 72, 3489.
Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFarsb8%3D&md5=e64ffe4a3c0446c5bcd6418672d6b743CAS |

[43]  A. Amrani, Z. Aizenshtat, Reaction of polysulfide anions with alpha, beta, unsaturated isoprenoid aldehydes in aquatic media: simulation of oceanic conditions. Org. Geochem. 2004, 35, 909.
Reaction of polysulfide anions with alpha, beta, unsaturated isoprenoid aldehydes in aquatic media: simulation of oceanic conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyhtr8%3D&md5=b4343bd2efd2e9f5ccb222bcb3e3ce5cCAS |

[44]  A. L. Bates, E. C. Spiker, P. G. Hatcher, S. A. Stout, V. C. Weintraub, Sulfur geochemistry of organic-rich sediments from Mud Lake, Florida, USA. Chem. Geol. 1995, 121, 245.
Sulfur geochemistry of organic-rich sediments from Mud Lake, Florida, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsFCht7w%3D&md5=c437cdc707d39b44dbb871ebf9a10319CAS |

[45]  J. W. M. Rudd, C. A. Kelly, A. Furutani, The role of sulfate reduction in long-term accumulation of organic and inorganic sulfur in lake-sediments. Limnol. Oceanogr. 1986, 31, 1281.
The role of sulfate reduction in long-term accumulation of organic and inorganic sulfur in lake-sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtVOmurs%3D&md5=0e58076e49fb34d6788a77b9efd3dc63CAS |

[46]  M. Dornblaser, A. E. Giblin, B. Fry, B. J. Peterson, Effects of sulfate concentration in the overlying water on sulfate reduction and sulfur storage in lake-sediments. Biogeochemistry 1994, 24, 129.
Effects of sulfate concentration in the overlying water on sulfate reduction and sulfur storage in lake-sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvVKguro%3D&md5=613caffe63ee542361c52019d5632e46CAS |

[47]  E. D. Burton, R. T. Bush, L. A. Sullivan, Sedimentary iron geochemistry in acidic waterways associated with coastal lowland acid sulfate soils. Geochim. Cosmochim. Acta 2006, 70, 5455.
Sedimentary iron geochemistry in acidic waterways associated with coastal lowland acid sulfate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyksLvE&md5=06574a7c22a3e38bdcf771f364a5bc75CAS |

[48]  L. Sullivan, R. T. Bush, D. Fyfe, Acid sulfate soil drain ooze: distribution, behaviour and implications for acidification and deoxygenation of waterways, in Acid Sulfate Soils in Australia and China (Eds C. Lin, M. D. Melville, L. A. Sullivan) 2002, pp. 91–99 (Science Press: Beijing).