Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT (Open Access)

Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs)

Zhanyun Wang A , Matthew MacLeod B , Ian T. Cousins B , Martin Scheringer A C and Konrad Hungerbühler A
+ Author Affiliations
- Author Affiliations

A Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland.

B Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden.

C Corresponding author. Email: scheringer@chem.ethz.ch

Environmental Chemistry 8(4) 389-398 https://doi.org/10.1071/EN10143
Submitted: 24 December 2010  Accepted: 1 March 2011   Published: 19 August 2011

Journal Compilation © CSIRO Publishing 2011 Open Access CC BY-NC-ND

Environmental context. Poly- and perfluorinated alkyl substances (PFASs) include a wide range of individual compounds that are used in many consumer products, but only a few physicochemical property data are available for these chemicals. Here we provide estimates of physicochemical properties (vapour pressure, water solubility, etc.) of 130 individual PFASs derived with a quantum-chemical model. Our results provide insight into the effect of molecular structure on the properties of PFASs and a basis for estimating the environmental partitioning and fate of PFASs.

Abstract. Recently, there has been concern about the presence of poly- and perfluorinated alkyl substances (PFASs) in the environment, biota and humans. However, lack of physicochemical data has limited the application of environmental fate models to understand the environmental distribution and ultimate fate of PFASs. We employ the COSMOtherm model to estimate physicochemical properties for 130 individual PFASs, namely perfluoroalkyl acids (including branched isomers for C4–C8 perfluorocarboxylic acids), their precursors and some important intermediates. The estimated physicochemical properties are interpreted using structure-property relationships and rationalised with insight into molecular interactions. Within a homologous series of linear PFASs with the same functional group, both air–water and octanol–water partition coefficient increase with increasing perfluorinated chain length, likely due to increasing molecular volume. For PFASs with the same perfluorinated chain length but different functional groups, the ability of the functional group to form hydrogen bonds strongly influences the chemicals’ partitioning behaviour. The partitioning behaviour of all theoretically possible branched isomers can vary considerably; however, the predominant isopropyl and monomethyl branched isomers in technical mixtures have similar properties as their linear counterparts (differences below 0.5 log units). Our property estimates provide a basis for further environmental modelling, but with some caveats and limitations.


References

[1]  K. Prevedouros, I. T. Cousins, R. C. Buck, S. H. Korzeniowski, Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32.
Sources, fate and transport of perfluorocarboxylates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gru7zK&md5=14e91a9069cf17a00b47907f105e54b6CAS |

[2]  S. Rayne, K. Forest, Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. J. Environ. Sci. Health A 2009, 44, 1145.
Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SqurjJ&md5=99083028fb53a20b36a0de50dd4961b4CAS |

[3]  B. O. Clarke, S. R. Smith, Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ. Int. 2011, 37, 226.
Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsValsL3P&md5=ab1503dde70042776026237211ae1b97CAS |

[4]  J. R. Parsons, M. Sáez, J. Dolfing, P. de Voogt, Biodegradation of perfluorinated compounds. Rev. Environ. Contam. Toxicol. 2008, 196, 53.
| 1:CAS:528:DC%2BD1MXmtlynsQ%3D%3D&md5=0ccfa50317e6d7891b5f4c4363367b3bCAS |

[5]  T. Frömel, T. P. Knepper, Biodegradation of fluorinated alkyl substances. Rev. Environ. Contam. Toxicol. 2010, 208, 161.
Biodegradation of fluorinated alkyl substances.Crossref | GoogleScholarGoogle Scholar |

[6]  C. M. Butt, D. C. G. Muir, I. Stirling, M. Kwan, S. A. Mabury, Rapid response of Arctic ringed seals to changes in perfluoroalkyl production. Environ. Sci. Technol. 2007, 41, 42.
Rapid response of Arctic ringed seals to changes in perfluoroalkyl production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ClurvE&md5=3df66707f18c60b34d89911214ec2fd1CAS |

[7]  J. W. Martin, M. M. Smithwick, B. M. Braune, P. F. Hoekstra, D. C. G. Muir, S. A. Mabury, Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ. Sci. Technol. 2004, 38, 373.
Identification of long-chain perfluorinated acids in biota from the Canadian Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOgsr8%3D&md5=31028bc5f8598e0cc849bbfcf6060ae4CAS |

[8]  M. Smithwick, R. J. Norstrom, S. A. Mabury, K. Solomon, T. J. Evans, I. Stirling, M. K. Taylor, D. C. G. Muir, Temporal trends of perfluoroalkyl contaminants in polar bears (Ursus maritimus) from two locations in the North American Arctic, 1972–2002. Environ. Sci. Technol. 2006, 40, 1139.
Temporal trends of perfluoroalkyl contaminants in polar bears (Ursus maritimus) from two locations in the North American Arctic, 1972–2002.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGhsg%3D%3D&md5=35a1a7a96254a9b512edec6926649e7eCAS |

[9]  J. M. Conder, R. A. Hoke, W. De Wolf, M. H. Russell, R. C. Buck, Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ. Sci. Technol. 2008, 42, 995.
Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFWmsw%3D%3D&md5=a5859b58e71eafefd64bade38f26a3c1CAS |

[10]  J. P. Giesy, J. E. Naile, J. S. Khim, P. D. Jones, J. L. Newsted, Aquatic toxicology of perfluorinated chemicals. Rev. Environ. Contam. Toxicol. 2010, 202, 1.
Aquatic toxicology of perfluorinated chemicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvF2rtw%3D%3D&md5=e6d14943f52145859cc1ff2da3441f62CAS |

[11]  A. A. Jensen, H. Leffers, Emerging endocrine disrupters: perfluoroalkylated substances. Int. J. Androl. 2008, 31, 161.
Emerging endocrine disrupters: perfluoroalkylated substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFCrsLw%3D&md5=ec262e4a5720ccd7475d50571647a8b4CAS |

[12]  J. Armitage, I. T. Cousins, R. C. Buck, K. Prevedouros, M. H. Russell, M. MacLeod, S. H. Korzeniowski, Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ. Sci. Technol. 2006, 40, 6969.
Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2qs7%2FK&md5=69fbd98978a84fd224bc61a80d2900d9CAS |

[13]  J. M. Armitage, M. MacLeod, I. T. Cousins, Comparative assessment of the global fate and transport pathways of long-chain perfluorocarboxylic acids (PFCAs) and perfluorocarboxylates (PFCs) emitted from direct sources. Environ. Sci. Technol. 2009, 43, 5830.
Comparative assessment of the global fate and transport pathways of long-chain perfluorocarboxylic acids (PFCAs) and perfluorocarboxylates (PFCs) emitted from direct sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVWhtL0%3D&md5=342e6bd7e649d0dae53831fb3de37fdbCAS |

[14]  J. M. Armitage, M. MacLeod, I. T. Cousins, Modeling the global fate and transport of perfluorooctanoic acid (PFOA) and perfluorooctanoate (PFO) emitted from direct sources using a multispecies mass balance model. Environ. Sci. Technol. 2009, 43, 1134.
Modeling the global fate and transport of perfluorooctanoic acid (PFOA) and perfluorooctanoate (PFO) emitted from direct sources using a multispecies mass balance model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlKmtw%3D%3D&md5=4c35bed062ff033d576453394497278dCAS |

[15]  J. M. Armitage, U. Schenker, M. Scheringer, J. W. Martin, M. MacLeod, I. T. Cousins, Modeling the global fate and transport of perfluorooctane sulfonate (PFOS) and precursor compounds in relation to temporal trends in wildlife exposure. Environ. Sci. Technol. 2009, 43, 9274.
Modeling the global fate and transport of perfluorooctane sulfonate (PFOS) and precursor compounds in relation to temporal trends in wildlife exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSgtbrF&md5=9fcd8f6e250be4175e9bd06e19c8ade0CAS |

[16]  U. Schenker, M. Scheringer, M. MacLeod, J. W. Martin, I. T. Cousins, K. Hungerbühler, Contribution of volatile precursor substances to the flux of perfluorooctanoate to the Arctic. Environ. Sci. Technol. 2008, 42, 3710.
Contribution of volatile precursor substances to the flux of perfluorooctanoate to the Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Ont7k%3D&md5=0c810537d37242152a99af267ee97c07CAS |

[17]  F. Wania, A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environ. Sci. Technol. 2007, 41, 4529.
A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFenu7k%3D&md5=46fdcb34f607d1fd07086ea7a0a12667CAS |

[18]  E. Webster, D. A. Ellis, L. K. Reid, Modeling the environmental fate of perfluorooctanoic acid and perfluorooctanoate: an investigation of the role of individual species partitioning. Environ. Toxicol. Chem. 2010, 29, 1466.
Modeling the environmental fate of perfluorooctanoic acid and perfluorooctanoate: an investigation of the role of individual species partitioning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFGjs7c%3D&md5=66ac16b8ee223905a4e4d7a4153ef9daCAS |

[19]  K.-U. Goss, G. Bronner, T. Harner, M. Hertel, T. C. Schmidt, The partition behavior of fluorotelomer alcohols and olefins. Environ. Sci. Technol. 2006, 40, 3572.
The partition behavior of fluorotelomer alcohols and olefins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1yhs70%3D&md5=1399fffab977792685257b3393cdc98cCAS |

[20]  J. P. Benskin, A. O. De Silva, J. W. Martin, Isomer profiling of perfluorinated substances as a tool for source tracking: a review of early findings and future applications. Rev. Environ. Contam. Toxicol. 2010, 208, 111.
Isomer profiling of perfluorinated substances as a tool for source tracking: a review of early findings and future applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWjt77L&md5=da2f7e058f4bdd66257f7cada8195a8eCAS |

[21]  H. P. H. Arp, C. Niederer, K.-U. Goss, Predicting the partitioning behavior of various highly fluorinated compounds. Environ. Sci. Technol. 2006, 40, 7298.
Predicting the partitioning behavior of various highly fluorinated compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWnsrnO&md5=24a9d62c4f2371b10f93cc553ba25daaCAS |

[22]  A. Klamt, F. Eckert, W. Arlt, COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures. Annu Rev Chem Biomol 2010, 1, 101.
COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKrtLzJ&md5=d7a702506855169b30bab1cebd67187cCAS |

[23]  A. Klamt, Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 1995, 99, 2224.
Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFaisb0%3D&md5=309b3130429d90291dc5045ecdd84d4eCAS |

[24]  A. Klamt, COSMO-RS: from quantum chemistry to fluid phase thermodynamics and drug design 2005 (Elsevier: Amsterdam, the Netherlands).

[25]  M. Buggert, C. Cadena, L. Mokrushina, I. Smirnova, E. J. Maginn, W. Arlt, COSMO-RS calculations of partition coefficients: different tools for conformational search. Chem. Eng. Technol. 2009, 32, 977.
COSMO-RS calculations of partition coefficients: different tools for conformational search.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKjur8%3D&md5=70c9bd066c9cd30d127533886518a308CAS |

[26]  C. J. Young, S. A. Mabury, Atmospheric perfluorinated acid precursors: chemistry, occurrence, and impacts. Rev. Environ. Contam. Toxicol. 2010, 208, 1.
Atmospheric perfluorinated acid precursors: chemistry, occurrence, and impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWjt77K&md5=ebd2280f50b24264cf9d81990aff89e7CAS |

[27]  J. G. Cole, D. Mackay, Correlating environmental partitioning properties of organic compounds: The three solubility approach. Environ. Toxicol. Chem. 2000, 19, 265.
| 1:CAS:528:DC%2BD3cXhsF2hsrw%3D&md5=db7e0f00b5eaa3b4fe5a0a78ff89efe5CAS |

[28]  D. A. Ellis, S. A. Mabury, Chemical ionization pathways of polyfluorinated chemicals – a connection to environmental atmospheric processes. J. Am. Soc. Mass Spectrom. 2003, 14, 1177.
Chemical ionization pathways of polyfluorinated chemicals – a connection to environmental atmospheric processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFahurc%3D&md5=d7f1aba62d3a0f545612996f0b3ab13cCAS |

[29]  P. J. Krusic, A. A. Marchione, F. Davidson, M. A. Kaiser, C.-P. C. Kao, R. E. Richardson, M. Botelho, R. L. Waterland, R. C. Buck, Vapor pressure and intramolecular hydrogen bonding in fluorotelomer alcohols. J. Phys. Chem. A 2005, 109, 6232.
Vapor pressure and intramolecular hydrogen bonding in fluorotelomer alcohols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFWmsrg%3D&md5=a8665bac2a18fbeb9b61e3f77050db71CAS |

[30]  J. Liu, L. S. Lee, Effect of fluorotelomer alcohol chain length on aqueous solubility and sorption by soils. Environ. Sci. Technol. 2007, 41, 5357.
Effect of fluorotelomer alcohol chain length on aqueous solubility and sorption by soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVyjtLc%3D&md5=02021ea96273d6b5977e63bc593f03ffCAS |

[31]  J. Liu, L. S. Lee, Solubility and sorption by soils of 8:2 fluorotelomer alcohol in water and cosolvent systems. Environ. Sci. Technol. 2005, 39, 7535.
Solubility and sorption by soils of 8:2 fluorotelomer alcohol in water and cosolvent systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVCnsbc%3D&md5=9f618b61b299579eb6b05f1b9236879aCAS |

[32]  S. Chu, R. J. Letcher, Linear and branched perfluorooctane sulfonate isomers in technical product and environmental samples by in-port derivatization-gas chromatography-mass spectrometry. Anal. Chem. 2009, 81, 4256.
Linear and branched perfluorooctane sulfonate isomers in technical product and environmental samples by in-port derivatization-gas chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1SgsLg%3D&md5=8daef32530d74be83b60760e13a3a182CAS |

[33]  M. W. Woodcroft, D. A. Ellis, S. P. Rafferty, D. C. Burns, R. E. March, N. L. Stock, K. S. Trumpour, J. Yee, K. Munro, Experimental characterization of the mechanism of perfluorocarboxylic acids’ liver protein bioaccumulation: the key role of the neutral species. Environ. Toxicol. Chem. 2010, 29, 1669.
| 1:CAS:528:DC%2BC3cXhtlSju73E&md5=2377e93c126b9bcd25334657f6e49425CAS |

[34]  C. J. McMurdo, D. A. Ellis, E. Webster, J. Butler, R. D. Christensen, L. K. Reid, Aerosol enrichment of the surfactant PFO and mediation of the water–air transport of gaseous PFOA. Environ. Sci. Technol. 2008, 42, 3969.
Aerosol enrichment of the surfactant PFO and mediation of the water–air transport of gaseous PFOA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFKhsrg%3D&md5=5662bb6cfadb5d342ee5401a03e8351dCAS |

[35]  E. Psillakis, J. Cheng, M. R. Hoffmann, A. J. Colussi, Enrichment factors of perfluoroalkyl oxoanions at the air/water interface. J. Phys. Chem. A 2009, 113, 8826.
Enrichment factors of perfluoroalkyl oxoanions at the air/water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFGmu7c%3D&md5=fe08472c40af099b10839f53b11c1ebdCAS |

[36]  N. Rontu, V. Vaida, Surface partitioning and stability of pure and mixed films of 8–2 fluorotelomer alcohol at the air–water interface. J. Phys. Chem. C 2007, 111, 11 612.
Surface partitioning and stability of pure and mixed films of 8–2 fluorotelomer alcohol at the air–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVSht70%3D&md5=131cf03c174518b9932f2dcd289d2c87CAS |

[37]  N. Rontu, V. Vaida, Miscibility of perfluorododecanoic acid with organic acids at the air–water interface. J. Phys. Chem. C 2007, 111, 9975.
Miscibility of perfluorododecanoic acid with organic acids at the air–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2ltr4%3D&md5=44823d4de7e064e411710e4d32eb1fd0CAS |

[38]  C. P. Higgins, R. G. Luthy, Sorption of perfluorinated surfactants on sediments. Environ. Sci. Technol. 2006, 40, 7251.
Sorption of perfluorinated surfactants on sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVChtrjJ&md5=1436f5eabf068622e6df6b5b5f74d81aCAS |

[39]  C. You, C. Jia, G. Pan, Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment–water interface. Environ. Pollut. 2010, 158, 1343.
Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Knur4%3D&md5=0b823f6eb9ac005214ce35a26c4e57e4CAS |

[40]  H. P. H. Arp, K.-U. Goss, Gas/particle partitioning behavior of perfluorocarboxylic acids with terrestrial aerosols. Environ. Sci. Technol. 2009, 43, 8542.
Gas/particle partitioning behavior of perfluorocarboxylic acids with terrestrial aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KrtrrN&md5=ba82e522a51ca2c71ebe020dc4b7c021CAS |

[41]  J. Cheng, E. Psillakis, M. R. Hoffmann, A. J. Colussi, Acid dissociation versus molecular association of perfluoroalkyl oxoacids: environmental implications. J. Phys. Chem. A 2009, 113, 8152.
Acid dissociation versus molecular association of perfluoroalkyl oxoacids: environmental implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVGktbs%3D&md5=aa226a3ae0344f1e3438e451bca8b521CAS |

[42]  J. López-Fontán, F. Sarmiento, P. Schulz, The aggregation of sodium perfluorooctanoate in water. Colloid Polym. Sci. 2005, 283, 862.
The aggregation of sodium perfluorooctanoate in water.Crossref | GoogleScholarGoogle Scholar |

[43]  J. L. López-Fontán, A. González-Pérez, J. Costa, J. M. Ruso, G. Prieto, P. C. Schulz, F. Sarmiento, The critical micelle concentration of tetraethylammonium perfluorooctylsulfonate in water. J. Colloid Interface Sci. 2006, 294, 458.
The critical micelle concentration of tetraethylammonium perfluorooctylsulfonate in water.Crossref | GoogleScholarGoogle Scholar |

[44]  D. C. Burns, D. A. Ellis, H. Li, C. J. McMurdo, E. Webster, Experimental pKA determination for perfluorooctanoic acid (PFOA) and the potential impact of pKA concentration dependence on laboratory-measured partitioning phenomena and environmental modeling. Environ. Sci. Technol. 2008, 42, 9283.
Experimental pKA determination for perfluorooctanoic acid (PFOA) and the potential impact of pKA concentration dependence on laboratory-measured partitioning phenomena and environmental modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCgtbrP&md5=85727a753ca9f4e71649720238600e37CAS |

[45]  D. C. Burns, D. A. Ellis, E. Webster, C. J. McMurdo, Response to Comment on ‘Experimental pKA determination for perfluorooctanoic acid (PFOA) and the potential impact of pKA concentration dependence on laboratory-measured partitioning phenomena and environmental modeling’. Environ. Sci. Technol. 2009, 43, 5152.
Response to Comment on ‘Experimental pKA determination for perfluorooctanoic acid (PFOA) and the potential impact of pKA concentration dependence on laboratory-measured partitioning phenomena and environmental modeling’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFGltr4%3D&md5=084734b1a4e2a00fd497010d9bffcc2aCAS |

[46]  K. U. Goss, H. P. Arp, Comment on ‘Experimental pKA determination for perfluorooctanoic acid (PFOA) and the potential impact of pKA concentration dependence on laboratory-measured partitioning phenomena and environmental modeling’. Environ. Sci. Technol. 2009, 43, 5150.
Comment on ‘Experimental pKA determination for perfluorooctanoic acid (PFOA) and the potential impact of pKA concentration dependence on laboratory-measured partitioning phenomena and environmental modeling’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFGmtb0%3D&md5=1bee01ef3e9b6551ab81fbb4197dbceeCAS |

[47]  B. Schröder, L. M. N. B. F. Santos, M. A. A. Rocha, M. B. Oliveira, I. M. Marrucho, J. A. P. Coutinho, Prediction of environmental parameters of polycyclic aromatic hydrocarbons with COSMO-RS. Chemosphere 2010, 79, 821.
Prediction of environmental parameters of polycyclic aromatic hydrocarbons with COSMO-RS.Crossref | GoogleScholarGoogle Scholar |

[48]  R. P. Schwarzenbach, P. M. Gschwend, D. M. Imboden, Environmental Organic Chemistry, 2nd edn 2002 (Wiley-Interscience: Hoboken, NJ).

[49]  K. Goss, R. Schwarzenbach, Rules of thumb for assessing equilibrium partitioning of organic compounds: Successes and pitfalls. J. Chem. Educ. 2003, 80, 450.
Rules of thumb for assessing equilibrium partitioning of organic compounds: Successes and pitfalls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Cjurg%3D&md5=b49a0f39230d376cb086d14d93b02f4eCAS |

[50]  P. Jing, P. J. Rodgers, S. Amemiya, High lipophilicity of perfluoroalkyl carboxylate and sulfonate: implications for their membrane permeability. J. Am. Chem. Soc. 2009, 131, 2290.
High lipophilicity of perfluoroalkyl carboxylate and sulfonate: implications for their membrane permeability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ohu7k%3D&md5=44df05e9997c943b4c6282737bd2ad5eCAS |

[51]  S. Rayne, K. Forest, Congener-specific organic carbon-normalized soil and sediment–water partitioning coefficients for the C1 through C8 perfluoroalkyl carboxylic and sulfonic acids. J. Environ. Sci. Health A 2009, 44, 1374.
Congener-specific organic carbon-normalized soil and sediment–water partitioning coefficients for the C1 through C8 perfluoroalkyl carboxylic and sulfonic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVamtL%2FF&md5=00d83d26445ea91d62d0ebec516da8f0CAS |

[52]  S. Rayne, K. Forest, K. J. Friesen, Estimated congener specific gas-phase atmospheric behavior and fractionation of perfluoroalkyl compounds: rates of reaction with atmospheric oxidants, air–water partitioning, and wet/dry deposition lifetimes. J. Environ. Sci. Health A 2009, 44, 936.
Estimated congener specific gas-phase atmospheric behavior and fractionation of perfluoroalkyl compounds: rates of reaction with atmospheric oxidants, air–water partitioning, and wet/dry deposition lifetimes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChtLzK&md5=43608773d8e5c152e1aa56a8fca71113CAS |

[53]  S. Rayne, K. Forest, K. J. Friesen, Estimated bioconcentration factors (BCFs) for the C4 through C8 perfluorinated alkylsulfonic acid (PFSA) and alkylcarboxylic acid (PFCA) congeners. J. Environ. Sci. Health A 2009, 44, 598.
Estimated bioconcentration factors (BCFs) for the C4 through C8 perfluorinated alkylsulfonic acid (PFSA) and alkylcarboxylic acid (PFCA) congeners.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVynsbc%3D&md5=44c3b4fe38573a8e6298783294b3a2f8CAS |

[54]  T. Yamamoto, Y. Noma, S.-i. Sakai, Y. Shibata, Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environ. Sci. Technol. 2007, 41, 5660.
Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVCqtr8%3D&md5=ea5e9ef8460f5e0150cefa3236fde559CAS |

[55]  A. O. De Silva, P. J. Tseng, S. A. Mabury, Toxicokinetics of perfluorocarboxylate isomers in rainbow trout. Environ. Toxicol. Chem. 2009, 28, 330.
Toxicokinetics of perfluorocarboxylate isomers in rainbow trout.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCqtr4%3D&md5=2259b141a257834c30ea9ba90a127790CAS |

[56]  K.-U. Goss, The pKA values of PFOA and other highly fluorinated carboxylic acids. Environ. Sci. Technol. 2008, 42, 456.
The pKA values of PFOA and other highly fluorinated carboxylic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWqsLrO&md5=1335d2bcbb72f91cd933f4050d2fe345CAS |

[57]  K.-U. Goss, Predicting adsorption of organic chemicals at the air–water interface. J. Phys. Chem. A 2009, 113, 12 256.
Predicting adsorption of organic chemicals at the air–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wktb%2FO&md5=57e21f6d314b257a2a62b89c23fa3efbCAS |

[58]  N. Carmosini, L. S. Lee, Partitioning of fluorotelomer alcohols to octanol and different sources of dissolved organic carbon. Environ. Sci. Technol. 2008, 42, 6559.
Partitioning of fluorotelomer alcohols to octanol and different sources of dissolved organic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFSktLw%3D&md5=91da447febbfc7fd02752e3d59c3ebcdCAS |