Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT (Open Access)

Water-to-air transfer of perfluorinated carboxylates and sulfonates in a sea spray simulator

Margot Reth A , Urs Berger A , Dag Broman A , Ian T. Cousins A , E. Douglas Nilsson A and Michael S. McLachlan A B
+ Author Affiliations
- Author Affiliations

A Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91 Stockholm, Sweden.

B Corresonding author. Email: michael.mclachlan@itm.su.se

Environmental Chemistry 8(4) 381-388 https://doi.org/10.1071/EN11007
Submitted: 13 January 2011  Accepted: 27 June 2011   Published: 19 August 2011

Journal Compilation © CSIRO Publishing 2011 Open Access CC BY-NC-ND

Environmental context. Perfluorinated alkyl acids are found in the remotest parts of the world, but it is still not known how they get there. By using a laboratory sea spray simulator, it is shown that these compounds are efficiently transferred from water to air. This indicates that perfluorinated alkyl acids could be transported long distances as a result of breaking waves ejecting them into the atmosphere.

Abstract. One hypothesis for the origin of perfluorinated alkyl acids, their salts and conjugate bases (here collectively termed PFAAs) in the atmosphere is transfer from the surface ocean by sea spray, the mechanistic explanation being that the surface active properties of PFAAs result in their enrichment on the surface of bursting bubbles. The water-to-air transfer of C6–C14 perfluorocarboxylates (PFCAs) and C6, C8 and C10 perfluorosulfonates (PFSAs) was studied in a laboratory scale sea spray simulator containing tap water spiked with PFCAs and PFSAs. The sequestration of the PFAAs out of bulk water and to the air–water surface was shown to increase exponentially with the length of the perfluorinated alkyl chain. Volatilisation of the PFAAs from an aqueous solution in the absence of spray resulted in less than 1 % transfer to the atmosphere during the experiment. In the presence of spray the transfer rate from water to air increased by up to 1360 times. The enhancement was dependent on the PFAA chain length, with the C6 carboxylate showing an enhancement of a factor of 37, the C7 carboxylate an enhancement of 320, whereas for all remaining PFAAs the enhancement exceeded 450 with the exception of the C14 carboxylate (106).


References

[1]  E. Kissa, Fluorinated Surfactants and Repellents, 2nd edn 2001 (Markel Dekker: New York).

[2]  M. Houde, J. W. Martin, R. J. Letcher, K. R. Solomon, D. C. G. Muir, Biological monitoring of polyfluoroalkyl substances: a review. Environ. Sci. Technol. 2006, 40, 3463.
Biological monitoring of polyfluoroalkyl substances: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVers7w%3D&md5=f4882d1064a287c19c118a9ecfaadc61CAS |

[3]  K. Prevedouros, I. T. Cousins, R. C. Buck, S. H. Korzeniowski, Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32.
Sources, fate and transport of perfluorocarboxylates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gru7zK&md5=14e91a9069cf17a00b47907f105e54b6CAS |

[4]  J. Armitage, I. T. Cousins, R. C. Buck, K. Prevedouros, M. H. Russell, M. MacLeod, S. H. Korzeniowski, Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ. Sci. Technol. 2006, 40, 6969.
Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2qs7%2FK&md5=69fbd98978a84fd224bc61a80d2900d9CAS |

[5]  J. M. Armitage, M. Macleod, I. T. Cousins, Modeling the global fate and transport of perfluorooctanoic acid (PFOA) and perfluorooctanoate (PFO) emitted from direct sources using a multispecies mass balance model. Environ. Sci. Technol. 2009, 43, 1134.
Modeling the global fate and transport of perfluorooctanoic acid (PFOA) and perfluorooctanoate (PFO) emitted from direct sources using a multispecies mass balance model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlKmtw%3D%3D&md5=4c35bed062ff033d576453394497278dCAS |

[6]  J. M. Armitage, M. MacLeod, I. T. Cousins, Comparative assessment of the global fate and transport pathways of long-chain perfluorocarboxylic acids (PFCAs) and perfluorocarboxylates (PFCs) emitted from direct sources. Environ. Sci. Technol. 2009, 43, 5830.
Comparative assessment of the global fate and transport pathways of long-chain perfluorocarboxylic acids (PFCAs) and perfluorocarboxylates (PFCs) emitted from direct sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVWhtL0%3D&md5=342e6bd7e649d0dae53831fb3de37fdbCAS |

[7]  D. A. Ellis, J. W. Martin, S. A. Mabury, M. D. Hurley, M. P. S. Andersen, T. J. Wallington, Atmospheric lifetime of fluorotelomer alcohols. Environ. Sci. Technol. 2003, 37, 3816.
Atmospheric lifetime of fluorotelomer alcohols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlaqt7o%3D&md5=c330276a37dfc8dfb5b8b307b41c2bdfCAS |

[8]  D. A. Ellis, J. W. Martin, A. O. De Silva, S. A. Mabury, M. D. Hurley, M. P. S. Andersen, T. J. Wallington, Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol. 2004, 38, 3316.
Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVShsb0%3D&md5=1a2a8158f069618f177c7efa759abbccCAS |

[9]  T. J. Wallington, M. D. Hurley, J. Xia, D. J. Wuebbles, S. Sillman, A. Ito, J. E. Penner, D. A. Ellis, J. Martin, S. A. Mabury, O. J. Nielsen, M. P. S. Andersen, Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. Environ. Sci. Technol. 2006, 40, 924.
Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCgsrjO&md5=09301cbe0528631906d1dea7e4414b19CAS |

[10]  C. D. O’Dowd, G. de Leeuw, Marine aerosol production: a review of the current knowledge. Philos. Trans. R. Soc. A 2007, 365, 1753.
Marine aerosol production: a review of the current knowledge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Kks7g%3D&md5=0910f6313cfd0cb45b12eb36ee4973bbCAS |

[11]  C. D. O’Dowd, B. Langmann, S. Varghese, C. Scannell, D. Ceburnius, M. C. Facchini, A combined organic-inorganic sea-spray source function. Geophys. Res. Lett. 2008, 35, L01801.
A combined organic-inorganic sea-spray source function.Crossref | GoogleScholarGoogle Scholar |

[12]  M. C. Facchini, M. Rinaldi, S. Decesari, C. Carbone, E. Finessi, M. Mircea, S. Fuzzi, D. Ceburnis, R. Flanagan, E. D. Nilsson, G. de Leeuw, M. Martino, J. Woeltjen, C. D. O’Dowd, Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett. 2008, 35, L17814.
Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates.Crossref | GoogleScholarGoogle Scholar |

[13]  A. M. Middlebrook, D. M. Murphy, D. S. Thomson, Observations of organic material in individual marine particles at Cape Grim during First Aerosol Characterization Experiment (ACE-1). Geophys. Res. Lett. 1998, 103, 16475.
Observations of organic material in individual marine particles at Cape Grim during First Aerosol Characterization Experiment (ACE-1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGlurc%3D&md5=6a025fec69b4a78233a59735c2d4c379CAS |

[14]  C. D. O’Dowd, M. C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y.-J. Yoon, J.-P. Putaud, Biogenically driven organic contribution to marine aerosol. Nature 2004, 431, 676.
Biogenically driven organic contribution to marine aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFGrurk%3D&md5=f2e559cf1c894958a3247f1f9a2c317fCAS |

[15]  W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. Zhou, L. Smoydzin, R. Sander, Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J. Geophys. Res. 2007, 112, D21202.
Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface.Crossref | GoogleScholarGoogle Scholar |

[16]  R. M. Gershey, Characterization of seawater organic matter carried by bubble-generated aerosol. Limnol. Oceanogr. 1983, 28, 309.
Characterization of seawater organic matter carried by bubble-generated aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhvVGiurw%3D&md5=205853a85268d71ed3aa44ac25d67931CAS |

[17]  M. Mochida, Y. Kitamori, K. Kawamura, Y. Nojiri, K. Suzuki, Fatty acids in the marine atmosphere: factors governing their concentrations and evaluation of organic films on sea-salt particles. J. Geophys. Res. 2002, 107, 4325.
Fatty acids in the marine atmosphere: factors governing their concentrations and evaluation of organic films on sea-salt particles.Crossref | GoogleScholarGoogle Scholar |

[18]  E. Psillakis, J. Cheng, M. R. Hoffmann, A. J. Colussi, Enrichment factors of perfluoroalkyl oxoanions at the air/water interface. J. Phys. Chem. A 2009, 113, 8826.
Enrichment factors of perfluoroalkyl oxoanions at the air/water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFGmu7c%3D&md5=fe08472c40af099b10839f53b11c1ebdCAS |

[19]  X. D. Ju, Y. H. Jin, K. Sasaki, N. Saito, Perfluorinated surfactants in surface, subsurface water and microlayer from Dalian Coastal waters in China. Environ. Sci. Technol. 2008, 42, 3538.
Perfluorinated surfactants in surface, subsurface water and microlayer from Dalian Coastal waters in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFars7s%3D&md5=214985f8d7ceb4138f9a47002f7ec480CAS |

[20]  A. Marcomini, G. Pojana, A. Giacometti, C. Oppo, Aerosolization of an anionic surfactant (LAS) and dissolved organic carbon (DOC) under laboratory conditions. Chemosphere 2001, 44, 257.
Aerosolization of an anionic surfactant (LAS) and dissolved organic carbon (DOC) under laboratory conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktV2hs78%3D&md5=69943d196e075b28b71d1d4ce275530cCAS |

[21]  C. J. McMurdo, D. A. Ellis, E. Webster, J. Butler, R. D. Christensen, L. K. Reid, Aerosol enrichment of the surfactant PFO and mediation of the water–air transport of gaseous PFOA. Environ. Sci. Technol. 2008, 42, 3969.
Aerosol enrichment of the surfactant PFO and mediation of the water–air transport of gaseous PFOA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFKhsrg%3D&md5=5662bb6cfadb5d342ee5401a03e8351dCAS |

[22]  E. Webster, D. A. Ellis, Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids. Environ. Toxicol. Chem. 2010, 29, 1703.
Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSju7vK&md5=2d6fbbad0de7a6db5ac433ffee308933CAS |

[23]  N. Yamashita, K. Kannan, S. Taniyasu, Y. Horii, G. Petrick, T. Gamo, A global survey of perfluorinated acids in oceans. Mar. Pollut. Bull. 2005, 51, 658.
A global survey of perfluorinated acids in oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Sjs7vI&md5=f41d0068b593598fe34002e3ebae727fCAS |

[24]  Y. Shinozuka, A. D. Clarke, S. G. Howell, V. N. Kapustin, B. J. Huebert, Sea-salt vertical profiles over the Southern and tropical Pacific oceans: microphysics, optical properties, spatial variability, and variations with wind speed. J. Geophys. Res. 2004, 109, D24201.
Sea-salt vertical profiles over the Southern and tropical Pacific oceans: microphysics, optical properties, spatial variability, and variations with wind speed.Crossref | GoogleScholarGoogle Scholar |

[25]  H. Struthers, A. M. L. Ekman, P. Glantz, T. Iversen, A. Kirkevåg, E. M. Mårtensson, Ø. Seland, E. D. Nilsson, The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic. Atmos. Chem. Phys. 2011, 11, 3459.
The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFWnuro%3D&md5=de123240359f67db8ee22d2e101d2cd6CAS |

[26]  S. Benassai, S. Becagli, R. Gragnan, O. Magand, M. Propositi, I. Fattori, R. Traversi, R. Udusti, Sea-spray deposition in Antarctic coastal and plateau areas from ITASE traverses Ann. Glaciol. 2005, 41, 32.
Sea-spray deposition in Antarctic coastal and plateau areas from ITASE traversesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaru7jK&md5=014dcf9dfac7661ad28a2f5d17ca367eCAS |

[27]  N. M. Mahowald, J.-F. Lamarque, X. X. Tie, E. Wolff, Sea-salt aerosol response to climate change: last Glacial Maximum, preindustrial, and doubled carbon dioxide climates J. Geophys. Res. 2006, 111, D05303.
Sea-salt aerosol response to climate change: last Glacial Maximum, preindustrial, and doubled carbon dioxide climatesCrossref | GoogleScholarGoogle Scholar |

[28]  K. A. H. Hultin, E. D. Nilsson, R. Krejci, M. E. Mårtensson, M. Ehn, Å. Hagström, G. de Leeuw, In situ laboratory sea spray production during the MAP 2006 cruise on the North East Atlantic. J. Geophys. Res. 2010, 115, D06201.
In situ laboratory sea spray production during the MAP 2006 cruise on the North East Atlantic.Crossref | GoogleScholarGoogle Scholar |

[29]  K. A. H. Hultin, R. Krejci, J. Pinhassi, L. Gomez-Consarnaub, E. M. Mårtensson, Å. Hagström, E. D. Nilsson, Aerosol and bacterial emissions from Baltic Sea water. Atmos. Res. 2011, 99, 1.
Aerosol and bacterial emissions from Baltic Sea water.Crossref | GoogleScholarGoogle Scholar |

[30]  C. A. Tyree, V. M. Hellion, O. A. Alexandrova, J. O. Allen, Foam droplets generated from natural and artificial seawaters. J. Geophys. Res. 2007, 112, D12204.
Foam droplets generated from natural and artificial seawaters.Crossref | GoogleScholarGoogle Scholar |

[31]  E. Fuentes, H. Coe, D. Green, G. de Leeuw, G. McFiggans, Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos. Meas. Technol. 2010, 3, 141.
Laboratory-generated primary marine aerosol via bubble-bursting and atomization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKqs7%2FO&md5=b81482f1bd3f0b09e76e57d0ad676014CAS |

[32]  K. Sellegri, C. D. O’Dowd, Y. J. Yoon, S. G. Jennings, G. de Leeuw, Surfactants and submicron sea spray generation. J. Geophys. Res. 2006, 111, D22215.
Surfactants and submicron sea spray generation.Crossref | GoogleScholarGoogle Scholar |

[33]  E. M. Mårtensson, E. D. Nilsson, G. de Leeuw, L. H. Cohen, H. C. Hansson, Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res. 2003, 108, 4297.
Laboratory simulations and parameterization of the primary marine aerosol production.Crossref | GoogleScholarGoogle Scholar |

[34]  D. E. Slauenwhite, B. D. Johnson, Bubble shattering: differences in bubble formation in fresh water and seawater. J. Geophys. Res. 1999, 104, 3265.
Bubble shattering: differences in bubble formation in fresh water and seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsl2ksbk%3D&md5=0bc35c7b592d57abef58010000afecb6CAS |

[35]  A. Holm, S. R. Wilson, P. Molander, E. Lundanes, T. Greibrokk, Determination of perfluorooctane sulfonate and perfluorooctanoic acid in human plasma by large volume injection capillary column switching liquid chromatography coupled to electrospray ionization mass spectrometry. J. Sep. Sci. 2004, 27, 1071.
Determination of perfluorooctane sulfonate and perfluorooctanoic acid in human plasma by large volume injection capillary column switching liquid chromatography coupled to electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1yltLk%3D&md5=932e66d4e7f3df1f9bb2b9f91318e4fcCAS |

[36]  J. Tolls, D. T. H. M. Sijm, Estimating the properties of surface-active chemicals, in Handbook of Property Estimation Methods for Chemicals (Eds R. S. Boethling, D. Mackay), 2000, pp. 419–445 (Lewis: Boca Raton).

[37]  D. C. Burns, D. A. Ellis, H. Li, C. J. McMurdo, E. Webster, Experimental pKa determination for perfluorooctanoic acid (PFOA) and the potential impact of pKa concentration dependence on laboratory-measured partitioning phenomena and environmental modeling. Environ. Sci. Technol. 2008, 42, 9283.
Experimental pKa determination for perfluorooctanoic acid (PFOA) and the potential impact of pKa concentration dependence on laboratory-measured partitioning phenomena and environmental modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCgtbrP&md5=85727a753ca9f4e71649720238600e37CAS |

[38]  M. A. Kaiser, B. J. Dawson, C. A. Barton, M. A. Botelho, Understanding potential exposure sources of perfluorinated carboxylic acids in the workplace. Ann. Occup. Hyg. 2010, 54, 915.
Understanding potential exposure sources of perfluorinated carboxylic acids in the workplace.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOnt73K&md5=c88e30333ce770c5aa20a16d79afd4f3CAS |

[39]  H. P. H. Arp, K.-U. Goss, Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling. Atmos. Environ. 2008, 42, 6869.
Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSqsbjL&md5=80d2de80b9fd006fd37f630c37b68151CAS |