Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Contamination of Antarctic snow by polycyclic aromatic hydrocarbons dominated by combustion sources in the polar region

Petr Kukučka A , Gerhard Lammel A B F , Alice Dvorská A , Jana Klánová A , Andrea Möller C D and Elke Fries E
+ Author Affiliations
- Author Affiliations

A Masaryk University, Research Centre for Toxic Compounds in the Environment, Kamenice 3, CZ-62500 Brno, Czech Republic.

B Max Planck Institute for Chemistry, Johann Joachim Becher Weg 27, D-55128 Mainz, Germany.

C Alfred Wegener Institute for Polar and Maritime Research, Columbusstrasse, D-27568 Bremerhaven, Germany.

D Present address: Aerotec Engineering GmbH, Fangdieckstrasse 66–68, D-22547 Hamburg, Germany.

E University of Osnabrueck, Institute of Environmental Systems Research, Barbarastrasse 12, D-49076 Osnabrueck, Germany.

F Corresponding author. Email: lammel@recetox.muni.cz

Environmental Chemistry 7(6) 504-513 https://doi.org/10.1071/EN10066
Submitted: 21 July 2010  Accepted: 28 September 2010   Published: 21 December 2010

Environmental context. Is long-range transport from populated and industrialised areas to blame for pollution of remote regions? We report that, for the world's most remote region, Antarctica, and one prominent class of global pollutants, polycyclic aromatic hydrocarbons, long-range transport from other continents has not contributed significantly to recent snow contamination. Rather, the major sources are regional scientific stations and ocean transport, mostly tourism.

Abstract. Firn samples attributed to the period between 2002 and 2005 were collected from a snow pit on the Ekström Shelf Ice in the Weddell Sea (70°43.8′S, 8°25.1′W). Low-volume meltwater samples (5 mL) were extracted by solid-phase microextraction (SPME) and analysed for polycyclic aromatic hydrocarbons (PAHs) by gas chromatography-mass spectrometry. The recovery of the analytical method for the 4–6 ring PAHs was low. PAH concentrations in snow were found within the range of 26–197 ng L–1. The most prevailing substances were determined to be naphthalene, 1- and 2-methylnaphthalene, acenaphthylene, acenaphthene and phenanthrene, with naphthalene accounting for an overall mean of 82% of total PAH. Potential emission sources of PAHs in snow were studied using back-trajectory statistics and available emission data of combustion sources in and around Antarctica. The distance to the sources (ships and research stations) in this region was found to control the snow PAH concentrations. There was no indication for intercontinental transport or marine sources.

Additional keywords: air pollution, Antarctica, GC-MS, long-range transport, SPME.


References

[1]  C. F. Boutron, E. W. Wolff, Heavy-metal and sulfur emissions to the atmosphere from human activities in Antarctica. Atmos. Environ. 1989, 23, 1669.
Heavy-metal and sulfur emissions to the atmosphere from human activities in Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtVCju78%3D&md5=fa83a42cfe52e8771676c724096250abCAS |

[2]  H. F. Graf, S. V. Shirsat, C. Oppenheimer, M. J. Jarvis, R. Podzun, D. Jacob, Continental scale Antarctic deposition of sulphur and black carbon from anthropogenic and volcanic sources. Atmos. Chem. Phys. 2010, 10, 2457.
Continental scale Antarctic deposition of sulphur and black carbon from anthropogenic and volcanic sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslOqtb0%3D&md5=9430bf51b2ed3662c6fef5e5f0f086ebCAS |

[3]  UNEP, Regionally Based Assessment of Persistent Toxic Substances – Antarctica Regional Report 2002 (United Nations Environment Programme: Geneva, Switzerland).

[4]  A. Stohl, H. Sodemann, Characteristics of atmospheric transport into the Antarctic troposphere. J. Geophys. Res. – Atmos. 2010, 115, D02305.
Characteristics of atmospheric transport into the Antarctic troposphere.Crossref | GoogleScholarGoogle Scholar |

[5]  R. M. Lugar. Results of PM10 and TSP monitoring at McMurdo station, Antarctica 1993 (US Department of Energy). Available at http://www.osti.gov/bridge/purl.cover.jsp?purl=/10192138-XQ7ued/webviewable/ [Verified 26 November 2010].

[6]  G. C. Cripps, Problems in the identification of anthropogenic hydrocarbons against natural background levels in the Antarctic. Antarct. Sci. 1989, 1, 307.
Problems in the identification of anthropogenic hydrocarbons against natural background levels in the Antarctic.Crossref | GoogleScholarGoogle Scholar |

[7]  S. Taniguchi, R. C. Montone, M. C. Bicego, F. I. Colabuono, R. R. Weber, J. L. Sericano, Chlorinated pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the fat tissue of seabirds from King George Island, Antarctica. Mar. Pollut. Bull. 2009, 58, 129.
Chlorinated pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the fat tissue of seabirds from King George Island, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSjtg%3D%3D&md5=8deb441ae76e3f73f09e681bd3807bcdCAS | 19019395PubMed |

[8]  M. C. Bícego, R. R. Weber, R. G. Ito, Aromatic hydrocarbons on surface waters of Admiralty Bay, King George Island, Antarctica. Mar. Pollut. Bull. 1996, 32, 549.
Aromatic hydrocarbons on surface waters of Admiralty Bay, King George Island, Antarctica.Crossref | GoogleScholarGoogle Scholar |

[9]  G. C. Cripps, Natural and Anthropogenic hydrocarbons in the Antarctic marine-environment. Mar. Pollut. Bull. 1992, 25, 266.
Natural and Anthropogenic hydrocarbons in the Antarctic marine-environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlt1Cntbc%3D&md5=2c82b5cc1d8dd581ad7d7ea80bb5e69eCAS |

[10]  J. Klánová, N. Matykiewiczová, Z. Mácka, P. Prosek, K. Láska, P. Klán, Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environ. Pollut. 2008, 152, 416.
Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica.Crossref | GoogleScholarGoogle Scholar | 17655988PubMed |

[11]  C. C. Martins, M. C. Bicego, S. Taniguchi, R. C. Montone, Aliphatic and polycyclic aromatic hydrocarbons in surface sediments in Admiralty Bay, King George Island, Antarctica. Antarct. Sci. 2004, 16, 117.
Aliphatic and polycyclic aromatic hydrocarbons in surface sediments in Admiralty Bay, King George Island, Antarctica.Crossref | GoogleScholarGoogle Scholar |

[12]  A. M. Caricchia, S. Chiavarini, C. Cremisini, M. Fantini, R. Morabito, A. Perini, M. Pezza, PAHs in atmospheric particulate in the area of Italian scientific base in Antarctica. Water Sci. Technol. 1993, 27, 235..

[13]  A. M. Caricchia, S. Chiavarini, C. Cremisini, R. Morabito, A. Perini, M. Pezza, Determination of PAH in atmospheric particulates in the area of the Italian base in Antarctica: report on monitoring activities during the last three scientific expeditions. Environ. Pollut. 1995, 87, 345.
Determination of PAH in atmospheric particulates in the area of the Italian base in Antarctica: report on monitoring activities during the last three scientific expeditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFKru7g%3D&md5=9bf384e813c2644a10561dc9f6565912CAS | 15091584PubMed |

[14]  S. V. Shirsat, H. F. Graf, An emission inventory of sulfur from anthropogenic sources in Antarctica. Atmos. Chem. Phys. 2009, 9, 3397.
An emission inventory of sulfur from anthropogenic sources in Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1amsbs%3D&md5=9c27467e1a9488c3c64e9e66f6c97641CAS |

[15]  J. Aislabie, M. Balks, N. Astori, G. Stevenson, R. Symons, Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica. Chemosphere 1999, 39, 2201.
Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1Onur0%3D&md5=915d84cf68066ea8d8a8de25b8adcc90CAS | 10576095PubMed |

[16]  R. W. Macdonald, L. A. Barrie, T. F. Bidleman, M. L. Diamond, D. J. Gregor, R. G. Semkin, W. M. Strachan, Y. F. Li, et al. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 2000, 254, 93.
Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Wju7w%3D&md5=472ca9d0bc8e974211aef62ecb0bdeceCAS | 10885446PubMed |

[17]  A. Cincinelli, P. G. Desideri, L. Lepri, L. Checchini, M. Del Bubba, R. Udisti, Marine contribution to the chemical composition of coastal and inland Antarctic snow. Int. J. Environ. Anal. Chem. 2001, 79, 283.
Marine contribution to the chemical composition of coastal and inland Antarctic snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvF2lsbg%3D&md5=5e7ee93ee288853dc3274e3b147bdafcCAS |

[18]  G. Lammel, A. M. Sehili, T. C. Bond, J. Feichter, H. Grassl, Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons – a modelling approach. Chemosphere 2009, 76, 98.
Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons – a modelling approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFSit70%3D&md5=d79eb8cfaeb5a8d112dacc5dd153850bCAS | 19275951PubMed |

[19]  G. C. Cripps, Hydrocarbons in the Antarctic marine-environment – monitoring and background. Int. J. Environ. Anal. Chem. 1994, 55, 3.
Hydrocarbons in the Antarctic marine-environment – monitoring and background.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsVSqs7w%3D&md5=e5406fde1da62f713c84c467bcef1b6cCAS |

[20]  G. Green, P. D. Nichols, Hydrocarbons and sterols in marine-sediments and soils at Davis-Station, Antarctica – a survey for human-derived contaminants. Antarct. Sci. 1995, 7, 137.
Hydrocarbons and sterols in marine-sediments and soils at Davis-Station, Antarctica – a survey for human-derived contaminants.Crossref | GoogleScholarGoogle Scholar |

[21]  J. T. Hoff, F. Wania, D. Mackay, R. Gillham, Sorption of nonpolar organic vapors by ice and snow. Environ. Sci. Technol. 1995, 29, 1982.
Sorption of nonpolar organic vapors by ice and snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFCksr8%3D&md5=5ec15942c7e7bb53b44164a8ba3792a1CAS |

[22]  E. Fries, K. Sieg, W. Puttmann, W. Jaeschke, R. Winterhalter, J. Williams, G. Moortgat, Benzene, alkylated benzenes, chlorinated hydrocarbons and monoterpenes in snow/ice at Jungfraujoch (46.6°N, 8.0°E) during CLACE 4 and 5. Sci. Total Environ. 2008, 391, 269.
Benzene, alkylated benzenes, chlorinated hydrocarbons and monoterpenes in snow/ice at Jungfraujoch (46.6°N, 8.0°E) during CLACE 4 and 5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVKjtw%3D%3D&md5=5256a7afcc00d63b5ca836b4abba094dCAS | 18031793PubMed |

[23]  E. Starokozhev, E. Fries, A. Cycura, W. Puttmann, Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006). Atmos. Chem. Phys. 2009, 9, 3197.
Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFKrsrc%3D&md5=6860a32ec9c8a90edadec0965a01906dCAS |

[24]  L. A. Barrie, D. Fisher, R. M. Koerner, 20th-century trends in Arctic air-pollution revealed by conductivity and acidity observations in snow and ice in the Canadian high arctic. Atmos. Environ. 1985, 19, 2055.
20th-century trends in Arctic air-pollution revealed by conductivity and acidity observations in snow and ice in the Canadian high arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XnsVSmuw%3D%3D&md5=460bb15c5ee958f67666ed0b650c68f2CAS |

[25]  J. Gabrieli, P. Vallelonga, G. Cozzi, P. Gabrielli, A. Gambaro, M. Sigl, F. Decet, M. Schwikowski, et al. Post 17th-century changes of European PAH emissions recorded in high-altitude alpine snow and ice. Environ. Sci. Technol. 2010, 44, 3260.
Post 17th-century changes of European PAH emissions recorded in high-altitude alpine snow and ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks12qs7k%3D&md5=757a2ef20eb7dd74e7cf003f2619817dCAS | 20392089PubMed |

[26]  A. J. Peters, D. J. Gregor, C. F. Teixeira, N. P. Jones, C. Spencer, The recent depositional trend of polycyclic aromatic hydrocarbons and elemental carbon to the Agassiz Ice Cap, Ellesmere Island, Canada. Sci. Total Environ. 1995, 160–161, 167..

[27]  J. L. Jaffrezo, M. P. Clain, P. Masclet, Polycyclic aromatic-hydrocarbons in the polar ice of Greenland – geochemical use of these atmospheric tracers. Atmos. Environ. 1994, 28, 1139.
Polycyclic aromatic-hydrocarbons in the polar ice of Greenland – geochemical use of these atmospheric tracers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtlSjtLs%3D&md5=9633688fa9a6094295ea5fa29b0cdb19CAS |

[28]  P. G. Desideri, L. Lepri, L. Checchini, D. Santianni, Organic-compounds in surface and deep Antarctic snow. Int. J. Environ. Anal. Chem. 1994, 55, 33.
Organic-compounds in surface and deep Antarctic snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsVWjtr8%3D&md5=032d0e16f5453605c3e89fc0a64feec8CAS |

[29]  O. Botta, Z. Martins, C. Emmenegger, J. P. Dworkin, D. P. Glavin, R. P. Harvey, R. Zenobi, J. L. Bada, P. Ehrenfreund, Polycyclic aromatic hydrocarbons and amino acids in meteorites and ice samples from LaPaz Icefield, Antarctica. Meteorit. Planet. Sci. 2008, 43, 1465.
Polycyclic aromatic hydrocarbons and amino acids in meteorites and ice samples from LaPaz Icefield, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFemsbbJ&md5=ed31c4ae8aca69976a491346ed2e4e90CAS |

[30]  C. L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145.
Solid phase microextraction with thermal desorption using fused silica optical fibers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsVCmt7k%3D&md5=1d06a982b1c8c28d93f50f3b8b94d4a1CAS |

[31]  M. de Fátima Alpendurada, Solid-phase microextraction: a promising technique for sample preparation in environmental analysis. J. Chromatogr. A 2000, 889, 3.
Solid-phase microextraction: a promising technique for sample preparation in environmental analysis.Crossref | GoogleScholarGoogle Scholar | 10985530PubMed |

[32]  R. Eisert, K. Levsen, Solid-phase microextraction coupled to gas chromatography: A new method for the analysis of organics in water. J. Chromatogr. A 1996, 733, 143.
Solid-phase microextraction coupled to gas chromatography: A new method for the analysis of organics in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFegtrw%3D&md5=46cb90f3b89a99dd4841853e162aa6fbCAS |

[33]  S. B. Hawthorne, C. B. Grabanski, D. J. Miller, J. P. Kreitinger, Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K-DOC values. Environ. Sci. Technol. 2005, 39, 2795.
Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K-DOC values.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlKquro%3D&md5=832a3e2551dfaf59ea09381db7518b00CAS | 15884378PubMed |

[34]  A. J. King, J. W. Readman, J. L. Zhou, The application of solid-phase micro-extraction (SPME) to the analysis of polycyclic aromatic hydrocarbons (PAHs). Environ. Geochem. Health 2003, 25, 69.
The application of solid-phase micro-extraction (SPME) to the analysis of polycyclic aromatic hydrocarbons (PAHs).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFyqu74%3D&md5=cd48f8f289773ec45123f1545233142aCAS | 12901081PubMed |

[35]  A. J. King, J. W. Readman, J. L. Zhou, Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction-gas chromatography-mass spectrometry. Anal. Chim. Acta 2004, 523, 259.
Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction-gas chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns12itrY%3D&md5=5dff58979baa3c6e562037e122699117CAS |

[36]  D. W. Potter, J. Pawliszyn, Rapid-determination of polyaromatic hydrocarbons and polychlorinated-biphenyls in water using solid-phase microextraction and GCMS. Environ. Sci. Technol. 1994, 28, 298.
Rapid-determination of polyaromatic hydrocarbons and polychlorinated-biphenyls in water using solid-phase microextraction and GCMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFOqsg%3D%3D&md5=7e6c153e94475f8d32d7b72882970bceCAS |

[37]  F. Göktas, Characterisation of glacio-chemical and glacio-meteorological parameters of Amundsenisen, Dronning Maud Land, Antarctica. Ber. Pol. Meerfor. 2002, 425,

[38]  M. Legrand, E. C. Pasteur, Methane sulfonic acid to non-sea-salt sulfate ratio in coastal Antarctic aerosol and surface snow. J. Geophys. Res. – Atmos. 1998, 103, 10991.
Methane sulfonic acid to non-sea-salt sulfate ratio in coastal Antarctic aerosol and surface snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslansrk%3D&md5=7e7fa3a7d28e341f71fe178d4d6b8d67CAS |

[39]  R. R. Draxler, G. D. Rolph, HYSPLIT (HYbrid Single-particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY 2003 (NOAA Air Resources Laboratory: Silver Springs, USA).

[40]  N. Aguinaga, N. Campillo, P. Vinas, M. Hernandez-Cordoba, Determination of 16 polycyclic aromatic hydrocarbons in milk and related products using solid-phase microextraction coupled to gas chromatography-mass spectrometry. Anal. Chim. Acta 2007, 596, 285.
Determination of 16 polycyclic aromatic hydrocarbons in milk and related products using solid-phase microextraction coupled to gas chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslGlsL0%3D&md5=10debfc61c4f95fee096a31dd1a3258dCAS | 17631108PubMed |

[41]  Q. Li, X. Xu, L. Sen-Chun, X. Wang, Determination of trace PAHs in seawater and sediment pore-water by solid-phase microextraction (SPME) coupled with GC/MS. Sci. China Ser. B. 2006, 49, 481.
Determination of trace PAHs in seawater and sediment pore-water by solid-phase microextraction (SPME) coupled with GC/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFyktQ%3D%3D&md5=a170ad387d9a562b40a842a225cb39a9CAS |

[42]  W.-Y. Shiu, D. Mackay, Henry’s Law Constants of Selected Aromatic Hydrocarbons, Alcohols, and Ketones. J. Chem. Eng. Data 1997, 42, 27.
Henry’s Law Constants of Selected Aromatic Hydrocarbons, Alcohols, and Ketones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlslyk&md5=54153e8532ffe66884b7256e4dee3b1fCAS |

[43]  P. C. M. van Noort, Estimation of amorphous organic carbon/water partition coefficients, subcooled aqueous solubilities, and n-octanol/water distribution coefficients of alkylbenzenes and polycyclic aromatic hydrocarbons. Chemosphere 2009, 74, 1018.
Estimation of amorphous organic carbon/water partition coefficients, subcooled aqueous solubilities, and n-octanol/water distribution coefficients of alkylbenzenes and polycyclic aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1ejtbY%3D&md5=5cc4ff3b0835c0d76258caef53353029CAS | 19091377PubMed |

[44]  R. Weller, J. Wöltjen, C. Piel, R. Resenberg, D. Wagenbach, G. König-Langlo, M. Kriews, Seasonal variability of crustal and marine trace elements in the aerosol at Neumayer station, Antarctica. Tellus B Chem. Phys. Meterol. 2008, 60, 742.
Seasonal variability of crustal and marine trace elements in the aerosol at Neumayer station, Antarctica.Crossref | GoogleScholarGoogle Scholar |

[45]  A. Dvorská, G. Lammel, J. Klánová, Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe Atmos. Environ. 2011, 45, 420.[Published online ahead of print 2010]
Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central EuropeCrossref | GoogleScholarGoogle Scholar |

[46]  J. M. Aislabie, M. R. Balks, J. M. Foght, E. J. Waterhouse, Hydrocarbon spills on Antarctic soils: Effects and management. Environ. Sci. Technol. 2004, 38, 1265.
Hydrocarbon spills on Antarctic soils: Effects and management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVWqsg%3D%3D&md5=564040fdb012d3bac7ff0f49a2b3effbCAS | 15046325PubMed |

[47]  D. L. Savoie, J. M. Prospero, R. J. Larsen, E. S. Saltzman, Nitrogen and Sulfur Species in Aerosols at Mawson, Antarctica, and Their Relationship to Natural Radionuclides. J. Atmos. Chem. 1992, 14, 181.
Nitrogen and Sulfur Species in Aerosols at Mawson, Antarctica, and Their Relationship to Natural Radionuclides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFalurk%3D&md5=b81bf17b3b77dfe97b965825b3bf62cdCAS |

[48]  G. Kiss, Z. Varga-Puchony, B. Tolnai, B. Varga, A. Gelencser, Z. Krivacsy, J. Hlavaj, The seasonal changes in the concentration of polycyclic aromatic hydrocarbons in precipitation and aerosol near Lake Balaton, Hungary. Environ. Pollut. 2001, 114, 55.
The seasonal changes in the concentration of polycyclic aromatic hydrocarbons in precipitation and aerosol near Lake Balaton, Hungary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVaku7o%3D&md5=a50de8b4f599d8147436386c2616c7b7CAS | 11444006PubMed |

[49]  X. P. Wang, T. D. Yao, P. L. Wang, W. Yang, L. D. Tian, The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier, Mt. Xixiabangma, central Himalayas. Sci. Total Environ. 2008, 394, 134.
The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier, Mt. Xixiabangma, central Himalayas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFaktrc%3D&md5=6a9bef5541708490a34e09a30a54af5aCAS | 18291445PubMed |

[50]  G. Carrera, P. Fernandez, R. M. Vilanova, J. O. Grimalt, Persistent organic pollutants in snow from European high mountain areas. Atmos. Environ. 2001, 35, 245.
Persistent organic pollutants in snow from European high mountain areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFyqt7o%3D&md5=14d5238be5a71c26463a6171357ab2ffCAS |

[51]  D. A. Cooper, Exhaust emissions from ships at berth. Atmos. Environ. 2003, 37, 3817.
Exhaust emissions from ships at berth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsleku7c%3D&md5=194d5681701f5c3844fb3ebb16bfdf08CAS |

[52]  S. Sidhu, B. Gullett, R. Striebich, J. Klosterman, J. Contreras, M. DeVito, Endocrine disrupting chemical emissions from combustion sources: diesel particulate emissions and domestic waste open burn emissions. Atmos. Environ. 2005, 39, 801.
Endocrine disrupting chemical emissions from combustion sources: diesel particulate emissions and domestic waste open burn emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVChsQ%3D%3D&md5=adb618ae3db3be698269acc7cf600771CAS |

[53]  C. J. Halsall, L. A. Barrie, P. Fellin, D. C. G. Muir, B. N. Billeck, L. Lockhart, E. Y. Rovinsky, E. Y. Kononov, B. Pastukhov, Spatial and temporal variation of polycyclic aromatic hydrocarbons in the Arctic atmosphere. Environ. Sci. Technol. 1997, 31, 3593.
Spatial and temporal variation of polycyclic aromatic hydrocarbons in the Arctic atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVamtrY%3D&md5=e13a324e5ebb2de5f521dd4d472a0fdaCAS |

[54]  D. C. G. Muir, R. Wagemann, B. T. Hargrave, D. J. Thomas, D. B. Peakall, R. J. Norstrom, Arctic Marine Ecosystem Contamination. Sci. Total Environ. 1992, 122, 75.
Arctic Marine Ecosystem Contamination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlOjtL8%3D&md5=86e667e751bda99d766c32211eab1250CAS | 1514106PubMed |

[55]  X. H. Wang, W. X. Wang, Bioaccumulation and transfer of benzo(a)pyrene in a simplified marine food chain. Mar. Ecol. Prog. Ser. 2006, 312, 101.
Bioaccumulation and transfer of benzo(a)pyrene in a simplified marine food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xntlyrsbo%3D&md5=a975c4d82d190791c5b3d4834e774321CAS |