Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Nickel sulfide formation at low temperature: initial precipitates, solubility and transformation products

Richard T. Wilkin A B and David A. Rogers A
+ Author Affiliations
- Author Affiliations

A US Environmental Protection Agency, National Risk Management Research Laboratory, Ground Water and Ecosystems Restoration Division, 919 Kerr Research Drive, Ada, OK 74820, USA.

B Corresponding author. Email: wilkin.rick@epa.gov

Environmental Chemistry 7(6) 514-523 https://doi.org/10.1071/EN10076
Submitted: 15 July 2010  Accepted: 24 September 2010   Published: 21 December 2010

Environmental context. Remediation technologies often rely on manipulation of redox conditions or natural redox processes to favour microbial sulfate-reduction and mineral sulfide formation for treatment of inorganic contaminants in groundwater, including nickel. However, few data are available on the structural properties, solubility and mineral transformation processes involving nickel sulfides. These data are needed in order to constrain the long term performance of groundwater remediation efforts.

Abstract. The formation of nickel sulfides has been examined experimentally over the temperature range from 25 to 60°C. At all conditions studied, hexagonal (α-NiS) was the initial precipitate from solution containing Ni2+ and dissolved sulfide. Freshly precipitated nickel sulfide possesses significant residual Ni–O coordination as revealed by X-ray absorption spectroscopy. With progressive aging, residual Ni–O coordination is replaced by Ni–S coordination. The formation of millerite (β-NiS, rhombohedral) was not detected in any of the synthesis experiments. In the presence of elemental sulfur, hexagonal NiS converted to polydymite (Ni3S4) and vaesite (NiS2). Thus, conversion of nickel monosulfide to thiospinel and disulfide structures appears to be redox dependent, analogous to aging and transformation processes of iron sulfides. In the absence of elemental sulfur or with only hydrogen sulfide or bisulfide present, transformation of hexagonal NiS was not observed after 1680 h at 60°C. Low-pH solubility experiments yielded a solubility product for hexagonal NiS of log Ks0 = –2.69 ± 0.26. Solubility data at pH > 3 suggest that Ni–bisulfide complexation is important in controlling the solubility of Ni in sulfidic solutions.

Additional keywords: groundwater, remediation, X-ray absorption spectroscopy.


References

[1]  K. G. Scheckel, R. G. Ford, R. T. Wilkin, Nickel, in Monitored Natural Attenuation of Inorganic Contaminants in Ground Water – Volume 2: Assessment for Non-radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium, EPA600/R-07/139 (Eds R. Ford, R. Wilkin, R. Puls) 2007, pp. 21–31 (US Environmental Protection Agency: Cincinnati, OH).

[2]  T. Thoenen, Pitfalls in the use of solubility limits for radioactive waste disposal: the case of nickel in sulfidic groundwaters. Nucl. Technol. 1999, 126, 75..

[3]  S. G. Benner, D. W. Blowes, W. D. Gould, R. B. Herbert, C. J. Ptacek, Geochemistry of a permeable reactive barrier for metals and acid mine drainage. Environ. Sci. Technol. 1999, 33, 2793..

[4]  R. D. Ludwig, R. G. McGregor, D. W. Blowes, S. G. Benner, K. Mountjoy, A permeable reactive barrier for treatment of heavy metals. Ground Water 2002, 40, 59.
A permeable reactive barrier for treatment of heavy metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt12muw%3D%3D&md5=e6dea52d9c544338f58bbde7c648b20fCAS | 11798047PubMed |

[5]  M. B. J. Lindsay, C. J. Ptacek, D. W. Blowes, W. D. Gould, Zerovalent iron and organic carbon mixtures for remediation of acid mine drainage: batch experiments. Appl. Geochem. 2008, 23, 2214.
Zerovalent iron and organic carbon mixtures for remediation of acid mine drainage: batch experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1KgsLg%3D&md5=a04978358f7b48886f98f830ea6a126cCAS |

[6]  G. Kullerud, R. A. Yund, The Ni–S system and related minerals. J. Petrol. 1962, 3, 126..

[7]  D. J. Vaughan, J. R. Craig, in Geochemistry of Hydrothermal Ore Deposits, 3rd edn (Ed. H. L. Barnes) 1997, pp. 367–434 (Wiley: New York).

[8]  T. Carlsson, U. Vuorinen, The reliability of solubility data: Results from a limited literature survey focusing on Ni, Pd and Np, VTT Tiedotteita-Meddelanden-Research Notes 1928 1998 (Technical Research Centre of Finland: Espoo, Finland).

[9]  W. Hummel, E. Curti, Nickel aqueous speciation and solubility at ambient conditions: a thermodynamic elegy. Monatsh. Chem. 2003, 134, 941.
Nickel aqueous speciation and solubility at ambient conditions: a thermodynamic elegy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksV2iu7w%3D&md5=884cfdcf21cbdc1d913cea15f29cd98eCAS |

[10]  J. P. Gramp, J. M. Bigham, K. Sasaki, O. H. Tuovinen, Formation of Ni- and Zn-sulfides in cultures of sulfate-reducing bacteria. Geomicrobiol. J. 2007, 24, 609.
Formation of Ni- and Zn-sulfides in cultures of sulfate-reducing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2isLzL&md5=4de4fa5565c8f6ee84d602e15060445eCAS |

[11]  B. Ravel, M. Newville, Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537.
Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlCntLo%3D&md5=877d196808a2dc681c36f671729b2192CAS | 15968136PubMed |

[12]  J. J. Rehr, Recent developments in multiple-scattering calculations of XAFS and XANES. Jpn. J. Appl. Phys. 1993, 32, 8..

[13]  J. J. Rehr, R. C. Albers, S. I. Zabinksky, High-order multiple-scattering calculations of X-ray absorption fine structure. Phys. Rev. Lett. 1992, 69, 3397.
High-order multiple-scattering calculations of X-ray absorption fine structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXivFCjug%3D%3D&md5=b725cab42ee0db313666082c3af53d05CAS | 10046808PubMed |

[14]  W. Lotmar, W. Feitknecht, Über Änderungen der Ionenabstande in Hydroxyschichtengittern. Zeit. Kristal. 1936, 93A, 368..

[15]  J. Trahan, R. G. Goodrich, S. F. Watkins, X-ray diffraction measurements on metallic and semiconducting hexagonal NiS. Phys. Rev. 1970, B2, 2859..

[16]  P. Lundqvist, X-ray studies on the binary system Ni–S. Ark. Kemi Mineral. Geol. 1947, 24A, 12..

[17]  G. Nowack, D. Schwarzenbach, T. Hahn, Charge densities in CoS2 and NiS2. Acta Crystallogr. 1991, B47, 650..

[18]  H. Wang, A. Pring, Y. Ngothai, B. O’Neill, The kinetics of the α→β transition in synthetic nickel monosulfide. Am. Min. 2006, 91, 171.
The kinetics of the α→β transition in synthetic nickel monosulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVSjtg%3D%3D&md5=d99d904b6537bcebaf4c858c2d36a876CAS |

[19]  H. Sowa, H. Ahsbahs, W. Schmitz, X-ray diffraction studies of millerite NiS under non-ambient conditions. Phys. Chem. Miner. 2004, 31, 321.
X-ray diffraction studies of millerite NiS under non-ambient conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVKrs7w%3D&md5=1a10a6750c118f3fff6961469037709dCAS |

[20]  N. Štrbac, D. Živkovic, I. Mihajlović, B. Boyanov, Z. Živkovic, Mechanism and kinetics of the oxidation of synthetic α-NiS. J. Serbian Chem. Soc. 2008, 73, 211.
Mechanism and kinetics of the oxidation of synthetic α-NiS.Crossref | GoogleScholarGoogle Scholar |

[21]  M. A. A. Schoonen, Mechanisms of sedimentary pyrite formation, in Sulfur Biogeochemistry: Past and Present (Eds J. P. Amend, K. J. Edwards, T. W. Lyons) 2004, pp. 117–134 (Geological Society of America: Boulder, CO).

[22]  M. A. A. Schoonen, H. L. Barnes, Reactions forming pyrite and marcasite from solution. II. Via FeS precursors below 100°C. Geochim. Cosmochim. Acta 1991, 55, 1505.
Reactions forming pyrite and marcasite from solution. II. Via FeS precursors below 100°C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslGnt7o%3D&md5=cc0a82c1f0a2c979638934df63ab5636CAS |

[23]  J. W. Morse, G. W. Luther, Chemical influences on trace metal sulfide interactions in anoxic basins. Geochim. Cosmochim. Acta 1999, 63, 3373.
Chemical influences on trace metal sulfide interactions in anoxic basins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCksLY%3D&md5=e10077204eae3902fcb66a060c5a03ceCAS |

[24]  D. Rickard, G. W. Luther III, Metal sulfide complexes and clusters, in Sulfide Mineralogy and Geochemistry: Reviews in Mineralogy and Geochemistry, Vol. 61 (Ed. D. J. Vaughan) 2006 (Mineralogical Society of America: Chantilly, VA).

[25]  A. M. Scheidegger, G. M. Lamble, D. L. Sparks, Investigation of Ni sorption on pyrophyllite: an XAFS study. Environ. Sci. Technol. 1996, 30, 548.
Investigation of Ni sorption on pyrophyllite: an XAFS study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFWgsg%3D%3D&md5=bfb13096604df9f816a8c895b0a6b2c3CAS |

[26]  C. M. Bethke, Geochemical Reaction Modeling 1996 (Oxford University Press: New York).

[27]  A. Thiel, H. Gessner, Über Nickelsulfid und Kobaltsulfid. I. Die scheinbare Anomalie im Verhalten des Nickelsulfids gegen Säure. Zeit. Anorg. Chem. 1914, 86, 1.
Über Nickelsulfid und Kobaltsulfid. I. Die scheinbare Anomalie im Verhalten des Nickelsulfids gegen Säure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC2cXht1ynsg%3D%3D&md5=ed0ead94dce6a388d63be70720935cfaCAS |

[28]  D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, R. L. Nuttal, The NBS tables of chemical thermodynamic properties. Selected values for inorganic C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 1982, 11, 1..

[29]  D. J. Vaughan, J. R. Craig, Mineral Chemistry of Metal Sulfides 1978 (Cambridge University Press: Cambridge, UK).

[30]  R. A. Robie, B. S. Hemingway, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures, in US Geological Survey Bulletin report 2131 1995 (US Geological Survey: Denver, CO).

[31]  R. Al-Farawati, C. M. G. van den Berg, Metal-sulfide complexation in seawater. Mar. Chem. 1999, 63, 331.
Metal-sulfide complexation in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslKiu78%3D&md5=a1a61e2ce86746fc02131bb1f11b86a2CAS |

[32]  D. Dyrssen, Sulfide complexation in surface seawater. Mar. Chem. 1988, 24, 143.
Sulfide complexation in surface seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksVeitro%3D&md5=780ae7bfc68e10e8ec07e98df5f76c8fCAS |

[33]  G. W. Luther, D. T. Rickard, S. Theberge, A. Oldroyd, Determination of metal (bi)sulfide stability constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ by voltammetric methods. Environ. Sci. Technol. 1996, 30, 671.
Determination of metal (bi)sulfide stability constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ by voltammetric methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFWntw%3D%3D&md5=1ad7b092933fe252929a3f85d5d2d908CAS |

[34]  S. Huang, E. Lopez-Capel, D. A. C. Manning, D. Rickard, The composition of nanoparticulate nickel sulfide. Chem. Geol. 2010, 277, 207..