Dissipation of sulfamethoxazole, trimethoprim and tylosin in a soil under aerobic and anoxic conditions
Feng Liu A , Guang-Guo Ying A B , Ji-Feng Yang A , Li-Jun Zhou A , Ran Tao A , Li Wang A , Li-Juan Zhang A and Ping-An Peng AA State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
B Corresponding author. Email: guangguo.ying@gmail.com
Environmental Chemistry 7(4) 370-376 https://doi.org/10.1071/EN09160
Submitted: 9 March 2010 Accepted: 4 June 2010 Published: 20 August 2010
Environmental context. Wide application of antibiotics in the treatment of human beings and animals has led to increasing concern about their safe disposal. After use, antibiotics may enter the soil environment via disposal of wastes such as biosolids and animal manure. We investigated the biotic and abiotic factors that influence the dissipation in soil of three commonly used antibiotics sulfamethoxazole, trimethoprim and tylosin.
Abstract. Antibiotics could enter soil via application of biosolids as fertilisers, thus resulting in soil contamination. This study investigated the persistence of sulfamethoxazole, trimethoprim and tylosin in a soil under aerobic and anoxic conditions. The dissipation of the antibiotics in the soil followed first-order reaction kinetics. The half-lives of sulfamethoxazole, trimethoprim and tylosin were 2, 4 and 8 days in non-sterile soil under aerobic conditions respectively. Under anoxic conditions, their half-lives in non-sterile soil were 7, 11 and 16 days respectively. Sulfamethoxazole and trimethoprim dissipated more rapidly in non-sterile soil than in sterile soil. Biodegradation played a major role in the dissipation of sulfamethoxazole and trimethoprim in the soil. No significant difference was found for tylosin between the sterile and non-sterile treatments under both aerobic and anaerobic conditions, suggesting that abiotic factors were responsible for the dissipation of tylosin in the soil.
Additional keywords: antibiotics, degradation, redox conditions.
Acknowledgement
The authors acknowledge the financial support from the Earmarked Fund of the State Key Laboratory of Organic Geochemistry, the National Natural Science Foundation of China (NSFC40771180, 40688001 and 40821003) and Guangdong Provincial Natural Science Foundation (8251064004000001). This is a contribution (1199) from the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.
[1]
A. K. Sarmah ,
M. T. Meyer ,
A. B. A. Boxall ,
A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment: a review.
Chemosphere 2006
, 65, 725.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[2]
K. Stoob ,
H. P. Singer ,
S. R. Mueller ,
R. P. Schwarzenbach ,
C. H. Stamm ,
Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment.
Environ. Sci. Technol. 2007
, 41, 7349.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[3]
J. F. Yang ,
G. G. Ying ,
L. H. Yang ,
J. L. Zhao ,
F. Liu ,
R. Tao ,
Z. Q. Yu ,
P. A. Peng ,
Degradation behavior of sulfadiazine in soils under different conditions.
J. Environ. Sci. Health B 2009
, 44, 241.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[4]
K. Kumar ,
S. C. Gupta ,
Y. Chander ,
A. K. Singh ,
Antibiotic use in agriculture and its impact on the terrestrial environment.
Adv. Agron. 2005
, 87, 1.
| Crossref | GoogleScholarGoogle Scholar |
[5]
K. Kümmerer ,
A. Henninger ,
Promoting resistance by the emission of antibiotics from hospitals and households into effluents.
Clin. Microbiol. Infect. 2003
, 9, 1203.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[6]
A. B. A. Boxall ,
D. W. Kolpin ,
B. Halling-Sørensen ,
J. Tolls ,
Are veterinary medicines causing environmental risks?
Environ. Sci. Technol. 2003
, 37, 286A.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[7]
M. S. Díaz-Cruz ,
M. J. López de Alda ,
D. Barceló ,
Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge.
Trends Analyt. Chem. 2003
, 22, 340.
| Crossref | GoogleScholarGoogle Scholar |
[8]
B. Halling-Sørensen ,
Algal toxicity of antibacterial agents used in intensive farming.
Chemosphere 2000
, 40, 731.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[9]
B. Halling-Sørensen ,
S. N. Nielsen ,
P. F. Lanzky ,
F. Ingerslev ,
H. C. Holten-Lützhøft ,
S. E. Jørgensen ,
Occurrence, fate and effects of pharmaceutical substances in the environment – a review.
Chemosphere 1998
, 36, 357.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[10]
S. E. Jørgensen ,
B. Halling-Sørensen ,
Drugs in the environment.
Chemosphere 2000
, 40, 691.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[11]
T. Backhaus ,
L. H. Grimme ,
The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri.
Chemosphere 1999
, 38, 3291.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[12]
M. Farré ,
S. Pérez ,
L. Kantiani ,
D. Barceló ,
Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment.
Trends Analyt. Chem. 2008
, 27, 991.
| Crossref | GoogleScholarGoogle Scholar |
[13]
K. Poole ,
Efflux-mediated resistance to fluoroquinolones in Gram-negative bacteria.
Antimicrob. Agents Chemother. 2000
, 44, 2233.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[14]
F. F. Reinthaler ,
J. Posch ,
G. Feierl ,
G. Wüst ,
D. Haas ,
G. Ruckenbauer ,
F. Mascher ,
E. Marth ,
Antibiotic resistance of E. coli in sewage and sludge.
Water Res. 2003
, 37, 1685.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[15]
W. D. Kong ,
Y. G. Zhu ,
B. J. Fu ,
P. Marschner ,
J. Z. He ,
The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community.
Environ. Pollut. 2006
, 143, 129.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[16]
W. D. Kong ,
Y. G. Zhu ,
Y. C. Liang ,
J. Zhang ,
F. A. Smith ,
M. Yang ,
Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.).
Environ. Pollut. 2007
, 147, 187.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[17]
A. Göbel ,
A. Thomsen ,
C. S. McArdell ,
A. Joss ,
W. Giger ,
Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment.
Environ. Sci. Technol. 2005
, 39, 3981.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[18]
A. C. Kolz ,
S. K. Ong ,
T. B. Moorman ,
Sorption of tylosin onto swine manure.
Chemosphere 2005
, 60, 284.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[19]
H. Dolliver ,
S. Gupta ,
S. Noll ,
Antibiotic degradation during manure composting.
J. Environ. Qual. 2008
, 37, 1245.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[20]
D. F. Hu ,
J. R. Coats ,
Aerobic degradation and photolysis of tylosin in water and soil.
Environ. Toxicol. Chem. 2007
, 26, 884.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[21]
A. Al-Ahmad ,
F. D. Daschner ,
K. Kümmerer ,
Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste-water bacteria.
Arch. Environ. Contam. Toxicol. 1999
, 37, 158.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[22]
R. Alexy ,
T. Kümpel ,
K. Kümmerer ,
Assessment of degradation of 18 antibiotics in the Closed Bottle Test.
Chemosphere 2004
, 57, 505.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[23]
H. T. Lai ,
J. H. Hou ,
Light and microbial effects on the transformation of four sulfonamides in eel pond water and sediment.
Aquaculture 2008
, 283, 50.
| Crossref | GoogleScholarGoogle Scholar |
[24]
P. Eichhorn ,
P. L. Ferguson ,
S. Pérez ,
D. S. Aga ,
Application of ion trap-MS with H/D exchange and QqTOF-MS in the identification of microbial degradates of trimethoprim in nitrifying activated sludge.
Anal. Chem. 2005
, 77, 4176.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[25]
S. Pérez ,
P. Eichhorn ,
D. S. Aga ,
Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment.
Environ. Toxicol. Chem. 2005
, 24, 1361.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[26]
S. A. I. Mohring ,
I. Strzysch ,
M. R. Fernandes ,
T. K. Kiffmeyer ,
J. Tuerk ,
G. Hamscher ,
Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy?
Environ. Sci. Technol. 2009
, 43, 2569.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[27]
J. D. Li ,
Y. Q. Cai ,
Y. L. Shi ,
S. F. Mou ,
G. B. Jiang ,
Determination of sulfonamide compounds in sewage and river by mixed hemimicelles solid-phase extraction prior to liquid chromatography spectrophotometry.
J. Chromatogr. A 2007
, 1139, 178.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[28]
E. L. McClure ,
C. S. Wong ,
Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters.
J. Chromatogr. A 2007
, 1169, 53.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[29]
M. L. Loke ,
J. Tjørnelund ,
B. Halling-Sørensen ,
Determination of the distribution coefficient (log Kd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure.
Chemosphere 2002
, 48, 351.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[30]
J. Tolls ,
Sorption of veterinary pharmaceuticals in soils: a review.
Environ. Sci. Technol. 2001
, 35, 3397.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[31]
M. Rabølle ,
N. H. Spliid ,
Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil.
Chemosphere 2000
, 40, 7715.
[32]
C. Accinelli ,
W. C. Koskinen ,
J. M. Becker ,
M. J. Sadowsky ,
Environmental fate of two sulfonamide antimicrobial agents in soil.
J. Agric. Food Chem. 2007
, 55, 2677.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[33]
F. Liu ,
G. G. Ying ,
R. Tao ,
J. L. Zhao ,
J. F. Yang ,
L. F. Zhao ,
Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities.
Environ. Pollut. 2009
, 157, 1636.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[34]
S. Höltge ,
R. Kreuzig ,
Laboratory testing of sulfamethoxazole and its metabolite acetyl-sulfamethoxazole in soil.
CLEAN: Soil, Air, Water 2007
, 35, 104.
| Crossref | GoogleScholarGoogle Scholar |
[35]
C. Wu ,
A. L. Spongberg ,
J. D. Witter ,
Sorption and biodegradation of selected antibiotics in biosolids.
J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2009
, 44, 454.
| Crossref | GoogleScholarGoogle Scholar |
[36]
P. C. Wszolek ,
M. Alexander ,
Effects of desorption rate on the biodegradation of n-alkylamines bound to clay.
J. Agric. Food Chem. 1979
, 27, 410.
| Crossref | GoogleScholarGoogle Scholar |
[37]
V. B. Manilal ,
M. Alexander ,
Factors affecting the microbial degradation of phenanthrene in soil.
Appl. Microbiol. Biotechnol. 1991
, 35, 401.
| Crossref | GoogleScholarGoogle Scholar |
[38]
F. Ingerslev ,
L. Toräng ,
M. L. Loke ,
B. Halling-Sørensen ,
N. Nyholm ,
Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems.
Chemosphere 2001
, 44, 865.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[39]
C. X. Wu ,
A. L. Spongberg ,
J. D. Witter ,
Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry.
Chemosphere 2008
, 73, 511.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[40]
J. F. Yang ,
G. G. Ying ,
L. J. Zhou ,
S. Liu ,
J. L. Zhao ,
Dissipation of oxytetracycline in soils under different redox conditions.
Environ. Pollut. 2009
, 157, 2704.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[41]
K. A. Loftin ,
C. D. Adams ,
M. T. Meyer ,
R. Surampalli ,
Effects of ionic strength, temperature, and pH on degradation of selected antibiotics.
J. Environ. Qual. 2008
, 37, 378.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[42]
H. M. Bialk ,
A. J. Simpson ,
J. A. Pedersen ,
Cross-coupling of sulfonamide antimicrobial agents with model humic constitutents.
Environ. Sci. Technol. 2005
, 39, 4463.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[43]
M. Kahle ,
C. Stamm ,
Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin.
Environ. Sci. Technol. 2007
, 41, 132.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[44]
M. Radke ,
C. Lauwigi ,
G. Heinkele ,
T. E. Mürdter ,
M. Letzel ,
Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test.
Environ. Sci. Technol. 2009
, 43, 3135.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[45]
R. H. Lindberg ,
P. Wennberg ,
M. I. Johansson ,
M. Tysklind ,
B. A. V. Andersson ,
Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden.
Environ. Sci. Technol. 2005
, 39, 3421.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[46]
H. Hektoen ,
J. A. Berge ,
V. Hormazabal ,
M. Yndestad ,
Persistence of antibacterial agents in marine sediments.
Aquaculture 1995
, 133, 175.
| Crossref | GoogleScholarGoogle Scholar |
[47]
A. Göbel ,
C. S. McArdell ,
A. Joss ,
H. Siegrist ,
W. Giger ,
Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies.
Sci. Total Environ. 2007
, 372, 361.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[48]
R. H. Lindberg ,
U. Olofsson ,
P. Rendahl ,
M. I. Johansson ,
M. Tysklind ,
B. A. V. Andersson ,
Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge.
Environ. Sci. Technol. 2006
, 40, 1042.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[49]
S. A. Sassman ,
A. K. Sarmah ,
L. S. Lee ,
Sorption of tylosin A, D, and A-aldol and degradation of tylosin A in soils.
Environ. Sci. Technol. 2007
, 26, 1627.