Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles

M. Baalousha A D , P. Le Coustumer B , I. Jones C and J. R. Lead A
+ Author Affiliations
- Author Affiliations

A School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK.

B Université de Bordeaux, B.18 av Facultés, F-33405 Talence, France.

C School of Metallurgy and Materials, University of Birmingham, Edgbaston B15 2TT, UK.

D Corresponding author. Email: m.a.baalousha@bham.ac.uk

Environmental Chemistry 7(4) 377-385 https://doi.org/10.1071/EN10003
Submitted: 16 January 2010  Accepted: 21 July 2010   Published: 20 August 2010

Environmental context. Manufactured nanoparticles, increasingly used in a wide range of products, can be released into the natural environment where they might pose a risk to environmental and human health. The nanoparticle characteristics that induce toxic effects, however, are not yet well-known. Understanding the toxicity and the fate and behaviour of nanoparticles in the environment requires precise characterisation of their properties at the nanoscale and the individual particle level.

Abstract. The shape, morphology, crystallography, and oxidation state of commercially available cerium oxide nanoparticles as compared with bulk particles were studied by high-resolution transmission electron microscopy coupled to electron energy loss spectroscopy, along with scanning electron microscopy. Nano and bulk particles have the same crystalline structure and morphology as the fluorite-type structure with a mainly octahedral shape enclosed by eight {111} facets, or a truncated octahedral shape enclosed by eight {111} facets and two {002} facets, or eight {111} and two {002} and four {220} facets. Some defects, including twin boundaries and steps and kinks, were observed. Bulk ceria particles contain mainly CeIV, whereas ceria nanoparticles contain a large fraction of CeIII, which decreases after interaction with humic acid and biological media. These properties are likely to play an essential role in the environmental and toxicological behaviour of nanoparticles.

Additional keywords: crystallinity, morphology, oxidation state, structure, surface defects.


Acknowledgement

This work was funded by the Natural Environment Research Council (NE/D004942/1) and supported by the Facility for Environmental Nanoscience Analysis and Characterisation (FENAC).


References


[1]   The project on emerging nanotechnologies. Woodrow Wilson database 2005. Available at http://www.nanotechproject.org/ [Verified 3 August 2010]

[2]   Baalousha M., Lead J. R., Introduction, Overview of nanoscience in the environment, in Environmental and Human Health Effects of Nanoparticles (Eds J. R. Lead, E. Smith) 2009, pp. 1–30 (Wiley: Chichester, UK).

[3]   S. J. Klaine , P. J. J. Alvarez , G. E. Batley , T. F. Fernandes , R. D. Handy , D. Y. Lyon , S. Mahendra , M. J. McLaughlin , J. R. Lead , Nanomaterials in the environment: behaviour, fate, bioavailability and effects. Environ. Toxicol. Chem. 2008 , 27,  1825.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[4]   M. Auffan , J. Rose , M. R. Wiesner , J. Y. Bottero , Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009 , 157,  1127.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[5]   G. Oberdörster , E. Oberdörster , J. Oberdörster , Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles supplemental web sections. Environ. Health Perspect. 2005 , 113,  823.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[6]   S. Deshpande , S. Patil , S. Kuchibhatla , S. Seala , Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005 , 87,  133113.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   C. Burda , X. Chen , R. Narayanan , M. A. El-Sayed , Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005 , 105,  1025.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[8]   H. Zhang , J. F. Banfield , Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 1998 , 8,  2073.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   G. A. Waychunas , H. Zhang , Structure, chemistry, and properties of mineral nanoparticles. Elements 2008 , 4,  381.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   Z. L. Wang , X. Feng , Polyhedral shapes of CeO2 nanoparticles. J. Phys. Chem. B 2003 , 107,  13563.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   A. M. Derfus , W. C. W. Chan , S. N. Bhatia , Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004 , 4,  11.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   A. Trovarelli , C. de Leitenburg , M. Boaro , G. Dolcetti , The utilization of ceria in industrial catalysis. Catal. Today 1999 , 50,  353.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   A. Thill , O. Zeyons , O. Spalla , F. Chauvat , J. Rose , M. Auffan , A. M. Flank , Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 2006 , 40,  6151.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[14]   K. Van Hoecke , J. T. K. Quik , J. Mankiewicz-Boczek , K. A. C. De Schamphelaere , A. Elsaesser , P. Van der Meeren , C. Barnes , G. McKerr , C. V. Howard , D. Van De Meent , K. Rydzyński , K. A. Dawson , A. Salvati , A. Lesniak , I. Lynch , G. Silversmit , B. De Samber , L. Vincze , C. R. Janssen , Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ. Sci. Technol. 2009 , 43,  4537.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[15]   N. M. Franklin , Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 2007 , 41,  8484.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[16]   J. R. Morones , J. L. Elechiguerra , A. Camacho , K. Holt , J. B. Kouri , J. T. Ramirez , M. J. Yacaman , The bactericidal effect of silver nanoparticles. Nanotechnology 2005 , 16,  2346.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   W.-O. Lee , Y.-J. An , H. Yoon , H.-S. Kweon , Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 2008 , 27,  1915.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[18]   N. J. Rogers , N. M. Franklin , S. C. Apte , G. E. Batley , J. R. Lead , M. Baalousha , Physico-chemical behaviour and toxicity to algae of nanoparticulate CeO2 in freshwater. Environ. Chem. 2010 , 7,  50.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   United States Environment Protection Agency, Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 3rd edn. Report EPA-600-4-91-002 1994 (US EPA: Cincinnati, OH).

[20]   Z. L. Wang , Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000 , 104,  1153.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   Williams D. B., Carter C. B., Transmission Electron Microscopy: Imaging 1996 (Springer: New York).

[22]   K. J. Wilkinson , E. Balnois , G. G. Leppard , J. Buffle , Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy. Colloids Surf. A Physicochem. Eng. Asp. 1999 , 155,  287.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   L. A. J. Garvie , P. R. Buseck , Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J. Phys. Chem. Solids 1999 , 60,  1943.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   F. Zhang , Q. Jin , S.-W. Chan , Ceria nanoparticles: size, size distribution, and shape. J. Appl. Phys. 2004 , 95,  4319.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   H. A. Al-Abadleh , V. H. Grassian , Oxide surfaces as environmental interfaces. Surf. Sci. Rep. 2003 , 52,  63.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   J. Conesa , Computer modeling of surfaces and defects on cerium dioxide. Surf. Sci. 1995 , 339,  337.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   T. Ohno , K. Sarukawa , M. Matsumura , Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. N. J. Chem. 2002 , 26,  1167.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   S. Pal , Y. K. Tak , J. M. Song , Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007 , 73,  1712.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[29]   T. S. Ahmadi , Z. L. Wang , T. C. Green , A. Henglein , M. A. El-Sayed , Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996 , 272,  1924.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[30]   Y. Sun , Y. Xia , Shape-controlled synthesis of gold and silver nanoparticles. Science 2002 , 298,  2176.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[31]   L. Wu , H. J. Wiesmann , A. R. Moodenbaugh , P. F. Klie , Y. Zhu , D. O. Welch , M. Suenaga , Oxidation state and lattice expansion of CeO2–x nanoparticles as a function of particle size. Phys. Rev. B 2004 , 69,  125415.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   Z. Wu , J. Zhang , X. Chen , Z. Chen , M. Sun , Z. Wu , L. Guo , XAFS study on the local atomic structures of cerium-oxide nanoparticles with surface coatings. Phys. Scr. T 2005 , 115,  802.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   J. A. Fortner , E. C. Buck , The chemistry of the light rare-earth elements as determined by electron energy loss spectroscopy. Appl. Phys. Lett. 1996 , 68,  3817.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   G. Yang , G. Mobus , R. Hand , Fine-structure EELS analysis of glasses and glass composites. J. Physics Conf. Series 2006 , 26,  73.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   F. Zhang , P. Wang , J. Koberstein , S. Khalid , S. W. Chan , Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 2004 , 563,  74.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   F. Zhang , S.-W. Chan , J. E. Spanier , E. Apak , Q. Jin , R. D. Robinson , I. P. Herman , Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl. Phys. Lett. 2002 , 80,  127.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   K.-i. Fukui , Y. Namai , Y. Iwasawa , Imaging of surface oxygen atoms and their defect structures on CeO2(1 1 1) by non-contact atomic force microscopy. Appl. Surf. Sci. 2002 , 188,  252.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   H. Nörenberg , G. A. D. Briggs , Defect structure of non-stoichiometric CeO2(111) surfaces studied by scanning tunneling microscopy. Phys. Rev. Lett. 1997 , 79,  4222.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   J. Fabrega , S. R. Fawcett , J. C. Renshaw , J. R. Lead , Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol. 2009 , 43,  7285.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[40]   D. Li , D. Y. Lyon , Q. Li , P. J. Alvarez , Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of fullerene water suspension. Environ. Toxicol. Chem. 2008 , 27,  1888.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[41]   M. I. Leybourne , W. D. Goodfellow , D. R. Boyle , G. M. Hall , Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn–Pb massive sulphide deposits. Appl. Geochem. 2000 , 15,  695.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   J. J. Braun , M. Pagel , J. P. Muller , P. Bilong , A. Michard , B. Guillet , Cerium anomalies in lateritic profiles. Geochim. Cosmochim. Acta 1990 , 54,  781.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[43]   O. Pourret , M. Davranche , G. Gruau , A. Dia , New insights into cerium anomalies in organic-rich alkaline waters. Chem. Geol. 2008 , 251,  120.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[44]   M. Bau , Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 1999 , 63,  67.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   H. J. W. de Baar , C. R. German , H. Elderfield , P. van Gaans , Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim. Cosmochim. Acta 1988 , 52,  1203.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[46]   F. Esch , S. Fabris , L. Zhou , T. Montini , C. Africh , P. Fornasiero , G. Comelli , R. Rosei , Electron localization determines defect formation on ceria substrates. Science 2005 , 309,  752.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[47]   C. T. Campbell , C. H. F. Peden , Oxygen vacancies and catalysis on ceria surfaces. Science 2005 , 309,  713.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[48]   E. G. Heckert , A. S. Karakoti , S. Seal , W. T. Self , The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008 , 29,  2705.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[49]   W. Lin , Y.-w. Huang , X. D. Zhou , Y. Ma , Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol. 2006 , 25,  451.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1