Bacteria–nanoparticle interactions and their environmental implications
Deborah M. Aruguete A B and Michael F. HochellaA Center for NanoBioEarth, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA.
B Corresponding author. Email: aruguete@vt.edu
Environmental Chemistry 7(1) 3-9 https://doi.org/10.1071/EN09115
Submitted: 4 September 2009 Accepted: 22 December 2009 Published: 22 February 2010
Environmental context. The advent of nanotechnology means that the release of nanomaterials into the environment is very likely, if not inevitable, and knowing the environmental impact of such nanomaterials is important. A key aspect of understanding this impact is to learn how nanomaterials affect microorganisms, a critical part of the environment; this topic is addressed in this review, which specifically concerns nanoparticle–bacteria interactions. Current studies show that nanoparticles have the potential to impact bacterial viability, although a great deal remains to be understood concerning nanoparticle–bacteria interactions.
Abstract. Part of the responsible use of nanotechnology will be to better delineate the potential impact of nanomaterials released into the environment. A key aspect of understanding this impact is to examine the interaction between nanomaterials and microorganisms, which are not only highly abundant in nature but critical for global environmental processes. In this Highlight, current knowledge about the interaction between bacteria and industrially-relevant nanoparticles is reviewed. Important areas for further study are discussed.
Additional keyword: microbial toxicology.
Acknowledgements
This work was supported by the National Science Foundation under a Minority Postdoctoral Research Fellowship, award 0610373, and also in part by the National Science Foundation and the Environmental Protection Agency under NSF Cooperative Agreement Number EF-0830093, Center for the Environmental Implications of NanoTechnology (CEINT). We thank Dr. Bojeong Kim and the anonymous reviewers for their helpful comments which improved the manuscript.
[1]
[2]
W. B. Whitman ,
D. C. Coleman ,
W. J. Wiebe ,
Prokaryotes: the unseen majority.
Proc. Natl. Acad. Sci. USA 1998
, 95, 6578.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[3]
P. G. Falkowski ,
T. Fenchel ,
E. F. Delong ,
The microbial engines that drive Earth’s biogeochemical cycles.
Science 2008
, 320, 1034.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[4]
D. M. Aruguete ,
J. S. Guest ,
W. W. Yu ,
N. G. Love ,
M. F. Hochella ,
Interaction of CdSe/CdS core-shell quantum dots and Pseudomonas aeruginosa.
Environ. Chem. 2010
, 7, 28.
| Crossref | GoogleScholarGoogle Scholar |
[5]
H. J. Klasen ,
Historical review of the use of silver in the treatment of burns. I. Early uses.
Burns 2000
, 26, 117.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
S. Shrivastava ,
T. Bera ,
A. Roy ,
G. Singh ,
P. Ramachandrarao ,
D. Dash ,
Characterization of enhanced antibacterial effects of novel silver nanoparticles.
Nanotechnology 2007
, 18, 225103.
| Crossref | GoogleScholarGoogle Scholar |
[7]
C. N. Lok ,
C. M. Ho ,
R. Chen ,
Q. Y. He ,
W. Y. Yu ,
H. Z. Sun ,
P. K. H. Tam ,
J. F. Chiu ,
C. M. Che ,
Proteomic analysis of the mode of antibacterial action of silver nanoparticles.
J. Proteome Res. 2006
, 5, 916.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[8]
I. Sondi ,
B. Salopek-Sondi ,
Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria.
J. Coll. Interf. Sci. 2004
, 275, 177.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
K.-H. Cho ,
J.-E. Park ,
T. Osaka ,
S.-G. Park ,
The study of antimicrobial activity and preservative effects of nanosilver ingredient.
Electrochim. Acta 2005
, 51, 956.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
S. K. Gogoi ,
P. Gopinath ,
A. Paul ,
A. Ramesh ,
S. S. Ghosh ,
A. Chattopadhyay ,
Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles.
Langmuir 2006
, 22, 9322.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
O. Y. Choi ,
K. K. Deng ,
N. J. Kim ,
L. Ross ,
R. Y. Surampalli ,
Z. Q. Hu ,
The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth.
Water Res. 2008
, 42, 3066.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
E. T. Hwang ,
J. H. Lee ,
Y. J. Chae ,
Y. S. Kim ,
B. C. Kim ,
B. I. Sang ,
M. B. Gu ,
Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria.
Small 2008
, 4, 746.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
A. B. Smetana ,
K. J. Klabunde ,
G. R. Marchin ,
C. M. Sorensen ,
Biocidal activity of nanocrystalline silver powders and particles.
Langmuir 2008
, 24, 7457.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
J. Fabrega ,
S. R. Fawcett ,
J. C. Renshaw ,
J. R. Lead ,
Silver nanoparticle impact upon bacterial growth: effect of pH, concentration, and organic matter.
Environ. Sci. Technol. 2009
, 43, 7285.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
O. Y. Choi ,
Z. Q. Hu ,
Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria.
Environ. Sci. Technol. 2008
, 42, 4583.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
[17]
[18]
A. Beigbeder ,
P. Degee ,
S. L. Conlan ,
R. J. Mutton ,
A. S. Clare ,
M. E. Pettitt ,
M. E. Callow ,
J. A. Callow ,
P. Dubois ,
Preparation and characterization of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings.
Biofouling 2008
, 24, 291.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[19]
D. Y. Lyon ,
J. D. Fortner ,
C. M. Sayes ,
V. L. Colvin ,
J. B. Hughes ,
Bacterial cell association and antimicrobial activity of a C60 water suspension.
Environ. Toxicol. Chem. 2005
, 24, 2757.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
Y. J. Tang ,
J. M. Ashcroft ,
D. Chen ,
G. W. Min ,
C. H. Kim ,
B. Murkhejee ,
C. Larabell ,
J. D. Keasling ,
F. F. Chen ,
Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism.
Nano Lett. 2007
, 7, 754.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[21]
J. D. Fortner ,
D. Y. Lyon ,
C. M. Sayes ,
A. M. Boyd ,
J. C. Falkner ,
E. M. Hotze ,
L. B. Alemany ,
Y. J. Tao ,
et al. C60 in water: nanocrystal formation and microbial response.
Environ. Sci. Technol. 2005
, 39, 4307.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[22]
D. Y. Lyon ,
L. K. Adams ,
J. C. Falkner ,
P. J. J. Alvarez ,
Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size.
Environ. Sci. Technol. 2006
, 40, 4360.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[23]
S. T. Kang ,
M. S. Mauter ,
M. Elimelech ,
Microbial toxicity of carbon-based nanomaterials: implications for river water and wastewater effluent.
Environ. Sci. Technol. 2009
, 43, 2648.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[24]
L. Nyberg ,
R. F. Turco ,
L. Nies ,
Assessing the impact of nanomaterials on anaerobic microbial communities.
Environ. Sci. Technol. 2008
, 42, 1938.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[25]
D. Y. Lyon ,
L. Brunet ,
G. W. Hinkal ,
M. R. Wiesner ,
P. J. J. Alvarez ,
Antibacterial activity of fullerene water suspensions (C60) is not due to ROS-mediated damage.
Nano Lett. 2008
, 8, 1539.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[26]
S. T. Kang ,
M. Pinault ,
L. D. Pfefferle ,
M. Elimelech ,
Single-walled carbon nanotubes exhibit strong antimicrobial activity.
Langmuir 2007
, 23, 8670.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[27]
D. Y. Lyon ,
D. A. Brown ,
P. J. J. Alvarez ,
Implications and potential applications of bactericidal fullerene water suspensions: effect of nC60 concentration, exposure conditions and shelf life.
Water Sci. Technol. 2008
, 57, 1533.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[28]
E. Oberdorster ,
Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass.
Environ. Health Perspect. 2004
, 112, 1058.
|
CAS |
PubMed |
[29]
J. P. Kamat ,
T. P. A. Devasagayam ,
K. I. Priyadarsini ,
H. Mohan ,
Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications.
Toxicology 2000
, 155, 55.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[30]
G. Tejral ,
N. R. Panyala ,
J. Havel ,
Carbon nanotubes: toxicological impact on human health and environment.
J. Appl. Biomed. 2009
, 7, 1.
|
CAS |
[31]
M. Kovochich ,
B. Espinasse ,
M. Auffan ,
E. M. Hotze ,
L. Wessel ,
T. Xia ,
A. E. Nel ,
M. R. Wiesner ,
Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition.
Environ. Sci. Technol. 2009
, 43, 6378.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
M. S. Hull ,
A. J. Kennedy ,
J. A. Steevens ,
A. J. Bednar ,
C. A. Weiss ,
P. J. Vikesland ,
Release of metal impurities from carbon nanomaterials influences aquatic toxicity.
Environ. Sci. Technol. 2009
, 43, 4169.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[33]
D. Li ,
D. Y. Lyon ,
Q. L. Li ,
P. J. J. Alvarez ,
Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension.
Environ. Toxicol. Chem. 2008
, 27, 1888.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[34]
A. Johansen ,
A. L. Pedersen ,
K. A. Jensen ,
U. Karlson ,
B. M. Hansen ,
J. J. Scott-Fordsmand ,
A. Winding ,
Effects of C60 fullerene nanoparticles on soil bacteria and protozoans.
Environ. Toxicol. Chem. 2008
, 27, 1895.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[35]
J. Verran ,
G. Sandoval ,
N. S. Allen ,
M. Edge ,
J. Stratton ,
Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension.
Dyes Pigments 2007
, 73, 298.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[36]
L. K. Adams ,
D. Y. Lyon ,
P. J. J. Alvarez ,
Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions.
Water Res. 2006
, 40, 3527.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[37]
L. Brunet ,
D. Y. Lyon ,
E. M. Hotze ,
P. J. J. Alvarez ,
M. R. Wiesner ,
Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.
Environ. Sci. Technol. 2009
, 43, 4355.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[38]
G. F. Fu ,
P. S. Vary ,
C. T. Lin ,
Anatase TiO2 nanocomposites for antimicrobial coatings.
J. Phys. Chem. B 2005
, 109, 8889.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[39]
H. D. Jang ,
S. K. Kim ,
S. J. Kim ,
Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties.
J. Nanopart. Res. 2001
, 3, 141.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[40]
Q. Li ,
R. C. Xie ,
Y. W. Li ,
E. A. Mintz ,
J. K. Shang ,
Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium dioxide.
Environ. Sci. Technol. 2007
, 41, 5050.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[41]
J. Rawat ,
S. Rana ,
M. S. Sorensson ,
R. D. K. Misra ,
Anti-microbial activity of doped anatase titania coated nickel ferrite compolsite nanoparticles.
Mater. Sci. Technol. 2007
, 23, 97.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
G. Applerot ,
A. Lipovsky ,
R. Dror ,
N. Perkas ,
Y. Nitzan ,
R. Lubart ,
A. Gedanken ,
Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury.
Adv. Funct. Mater. 2009
, 19, 842.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[43]
N. M. Franklin ,
N. J. Rogers ,
S. C. Apte ,
G. E. Batley ,
G. E. Gadd ,
P. S. Casey ,
Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility.
Environ. Sci. Technol. 2007
, 41, 8484.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[44]
M. Heinlaan ,
A. Ivask ,
I. Blinova ,
H. C. Dubourguier ,
A. Kahru ,
Toxicity of nanosized and bulk ZnO, CuO, and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyrus.
Chemosphere 2008
, 71, 1308.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[45]
Y. T. He ,
J. M. Wan ,
T. Tokunaga ,
Kinetic stability of hematite nanoparticles: the effect of particle sizes.
J. Nanopart. Res. 2008
, 10, 321.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[46]
K. A. Dunphy Guzman ,
M. P. Finnegan ,
J. F. Banfield ,
Influence of surface potential on aggregation and transport of titania nanoparticles.
Environ. Sci. Technol. 2006
, 40, 7688.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[47]
T. R. Thurston ,
J. P. Wilcoxon ,
Photooxidation of organic chemicals by nanoscale MoS2.
J. Phys. Chem. B 1999
, 103, 11.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[48]
S. Bose ,
M. F. Hochella ,
Y. A. Gorby ,
D. W. Kennedy ,
D. E. McCready ,
A. S. Madden ,
B. H. Lower ,
Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1.
Geochim. Cosmochim. Acta 2009
, 73, 962.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[49]
N. Jones ,
B. Ray ,
K. T. Ranjit ,
A. C. Manna ,
Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms.
FEMS Microbiol. Lett. 2008
, 279, 71.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[50]
O. Yamamoto ,
Influence of particle size on the antibacterial activity of zinc oxide.
Int. J. Inorg. Mater. 2001
, 3, 643.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[51]
L. L. Zhang ,
Y. H. Jiang ,
Y. L. Ding ,
M. Povey ,
D. York ,
Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids).
J. Nanopart. Res. 2007
, 9, 479.
| Crossref | GoogleScholarGoogle Scholar |
[52]
Y. W. Zhang ,
H. S. Peng ,
W. Huang ,
Y. F. Zhou ,
D. Y. Yan ,
Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles.
J. Coll. Interf. Sci. 2008
, 325, 371.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[53]
A. Panáček ,
L. Kvítek ,
R. Prucek ,
M. Kolář ,
R. Večeřová ,
N. Pizúrová ,
V. K. Sharma ,
T. Nevěčná ,
R. Zbořil ,
Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity.
J. Phys. Chem. B 2006
, 110, 16248.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[54]
J. A. Kloepfer ,
R. E. Mielke ,
J. L. Nadeau ,
Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms.
Appl. Environ. Microbiol. 2005
, 71, 2548.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[55]
J. Liu ,
D. M. Aruguete ,
J. R. Jinschek ,
J. D. Rimstidt ,
M. F. Hochella ,
The non-oxidative dissolution of galena nanocrystals: insights into mineral dissolution rates as a function of grain size, shape, and aggregation state.
Geochim. Cosmochim. Acta 2008
, 72, 5984.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[56]
R. Narayanan ,
M. A. El-Sayed ,
Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability.
J. Phys. Chem. B 2005
, 109, 12663.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[57]
F. Huang ,
B. Gilbert ,
H. H. Zhang ,
J. F. Banfield ,
Reversible, surface-controlled structure transformation in nanoparticles induced by an aggregation state.
Phys. Rev. Lett. 2004
, 92, 155501.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[58]
J. Liu ,
D. M. Aruguete ,
M. Murayama ,
M. F. Hochella ,
Influence of size and aggregation on the reactivey of an environmentally and industrially relevant nanomaterial (PbS).
Environ. Sci. Technol. 2009
, 43, 8178.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[59]
T. Jin ,
D. Sun ,
J. Y. Su ,
H. Zhang ,
H. J. Sue ,
Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7.
J. Food Sci. 2009
, 74, M46.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[60]
I. Velzeboer ,
A. J. Hendriks ,
A. M. J. Ragas ,
D. Van de Meent ,
Aquatic ecotoxicity tests of some nanomaterials.
Environ. Toxicol. Chem. 2008
, 27, 1942.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[61]
S. Kerisit ,
C. X. Liu ,
Molecular simulations of water and ion diffusion in nanosized mineral fractures.
Environ. Sci. Technol. 2009
, 43, 777.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[62]
G. Oberdörster ,
V. Stone ,
K. Donaldson ,
Toxicology of nanoparticles: a historical perspective.
Nanotoxicology 2007
, 1, 2.
| Crossref | GoogleScholarGoogle Scholar |
[63]
K. Kostarelos ,
L. Lacerda ,
G. Pastorin ,
W. Wu ,
S. Wieckowski ,
J. Luangsilvilay ,
S. Godefroy ,
D. Patarotto ,
et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type.
Nat. Nanotechnol. 2007
, 2, 108.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[64]
S. Pal ,
Y. K. Tak ,
J. M. Song ,
Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli.
Appl. Environ. Microbiol. 2007
, 73, 1712.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[65]
P. M. Ajayan ,
L. D. Marks ,
Quasimelting and phases of small particles.
Phys. Rev. Lett. 1988
, 60, 585.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[66]
D. W. Hatchett ,
S. Henry ,
Electrochemistry of sulfur adlayers on the low-index faces of silver.
J. Phys. Chem. 1996
, 100, 9854.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[67]
L. Kvitek ,
A. Panacek ,
J. Soukupova ,
M. Kolar ,
R. Vecerova ,
R. Prucek ,
M. Holecova ,
R. Zboril ,
Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs).
J. Phys. Chem. C 2008
, 112, 5825.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[68]
C. M. Goodman ,
C. D. McCusker ,
T. Yilmaz ,
V. M. Rotello ,
Toxicity of gold nanoparticles functionalized with cationic and anionic side chains.
Bioconjug. Chem. 2004
, 15, 897.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[69]
[70]
K. Y. Yoon ,
J. H. Byeon ,
J. H. Park ,
J. H. Hwang ,
Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles.
Sci. Total Environ. 2007
, 373, 572.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[71]
J. P. Ruparelia ,
A. K. Chatterjee ,
S. P. Duttagupta ,
S. Mukherji ,
Strain specificity in antimicrobial activity of silver and copper nanoparticles.
Acta Biomater. 2008
, 4, 707.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[72]
P. K. Stoimenov ,
R. L. Klinger ,
G. R. Marchin ,
K. J. Klabunde ,
Metal oxide nanoparticles as bactericidal agents.
Langmuir 2002
, 18, 6679.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[73]
T. J. Beveridge ,
S. A. Makin ,
J. L. Kadurugamuwa ,
Z. S. Li ,
Interactions between biofilms and the environment.
FEMS Microbiol. Rev. 1997
, 20, 291.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[74]
M. E. Davey ,
G. A. O’Toole ,
Microbial biofilms: from ecology to molecular genetics.
Microbiol. Mol. Biol. Rev. 2000
, 64, 847.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[75]
P. Watnick ,
R. Kolter ,
Biofilm, city of microbes.
J. Bacteriol. 2000
, 182, 2675.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[76]
J. W. Moreau ,
P. K. Weber ,
M. C. Martin ,
B. Gilbert ,
I. D. Hutcheon ,
J. F. Banfield ,
Extracellular proteins limit the dispersal of biogenic nanoparticles.
Science 2007
, 316, 1600.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[77]
J. Brant ,
H. Lecoanet ,
M. R. Wiesner ,
Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems.
J. Nanopart. Res. 2005
, 7, 545.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[78]
P. J. Vikesland ,
A. M. Heathcock ,
R. L. Rebodos ,
K. E. Makus ,
Particle size and aggregation effects on magnetite reactivity towards carbon tetrachloride.
Environ. Sci. Technol. 2007
, 41, 5277.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[79]
Z. B. Huang ,
X. Zheng ,
D. H. Yan ,
G. F. Yin ,
X. M. Liao ,
Y. Q. Kang ,
Y. D. Yao ,
D. Huang ,
B. Q. Hao ,
Toxicological effect of ZnO nanoparticles based on bacteria.
Langmuir 2008
, 24, 4140.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[80]
J. A. Kloepfer ,
R. E. Mielke ,
M. S. Wong ,
K. H. Nealson ,
G. Stucky ,
J. L. Nadeau ,
Quantum dots as strain- and metabolism-specific microbiological labels.
Appl. Environ. Microbiol. 2003
, 69, 4205.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[81]
F. Kawai ,
Microbial degradation of polyethers.
Appl. Microbiol. Biotechnol. 2002
, 58, 30.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[82]
K. K. Choi ,
C. W. Park ,
S. Y. Kim ,
W. S. Lyoo ,
S. H. Lee ,
J. W. Lee ,
Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater.
J. Microbiol. Biotechnol. 2004
, 14, 1009.
|
CAS |