Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Bacteria–nanoparticle interactions and their environmental implications

Deborah M. Aruguete A B and Michael F. Hochella Jr. A
+ Author Affiliations
- Author Affiliations

A Center for NanoBioEarth, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA.

B Corresponding author. Email: aruguete@vt.edu

Environmental Chemistry 7(1) 3-9 https://doi.org/10.1071/EN09115
Submitted: 4 September 2009  Accepted: 22 December 2009   Published: 22 February 2010

Environmental context. The advent of nanotechnology means that the release of nanomaterials into the environment is very likely, if not inevitable, and knowing the environmental impact of such nanomaterials is important. A key aspect of understanding this impact is to learn how nanomaterials affect microorganisms, a critical part of the environment; this topic is addressed in this review, which specifically concerns nanoparticle–bacteria interactions. Current studies show that nanoparticles have the potential to impact bacterial viability, although a great deal remains to be understood concerning nanoparticle–bacteria interactions.

Abstract. Part of the responsible use of nanotechnology will be to better delineate the potential impact of nanomaterials released into the environment. A key aspect of understanding this impact is to examine the interaction between nanomaterials and microorganisms, which are not only highly abundant in nature but critical for global environmental processes. In this Highlight, current knowledge about the interaction between bacteria and industrially-relevant nanoparticles is reviewed. Important areas for further study are discussed.

Additional keyword: microbial toxicology.


Acknowledgements

This work was supported by the National Science Foundation under a Minority Postdoctoral Research Fellowship, award 0610373, and also in part by the National Science Foundation and the Environmental Protection Agency under NSF Cooperative Agreement Number EF-0830093, Center for the Environmental Implications of NanoTechnology (CEINT). We thank Dr. Bojeong Kim and the anonymous reviewers for their helpful comments which improved the manuscript.


References


[1]   Nealson K. H., Ghiorse W. A., Geobiology: Exploring the Interface between the Biosphere and the Geosphere 2001 (American Academy of Microbiology: Washington, DC).

[2]   W. B. Whitman , D. C. Coleman , W. J. Wiebe , Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 1998 , 95,  6578.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   P. G. Falkowski , T. Fenchel , E. F. Delong , The microbial engines that drive Earth’s biogeochemical cycles. Science 2008 , 320,  1034.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   D. M. Aruguete , J. S. Guest , W. W. Yu , N. G. Love , M. F. Hochella , Interaction of CdSe/CdS core-shell quantum dots and Pseudomonas aeruginosa. Environ. Chem. 2010 , 7,  28.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   H. J. Klasen , Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 2000 , 26,  117.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   S. Shrivastava , T. Bera , A. Roy , G. Singh , P. Ramachandrarao , D. Dash , Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007 , 18,  225103.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   C. N. Lok , C. M. Ho , R. Chen , Q. Y. He , W. Y. Yu , H. Z. Sun , P. K. H. Tam , J. F. Chiu , C. M. Che , Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006 , 5,  916.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[8]   I. Sondi , B. Salopek-Sondi , Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Coll. Interf. Sci. 2004 , 275,  177.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[9]   K.-H. Cho , J.-E. Park , T. Osaka , S.-G. Park , The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 2005 , 51,  956.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   S. K. Gogoi , P. Gopinath , A. Paul , A. Ramesh , S. S. Ghosh , A. Chattopadhyay , Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 2006 , 22,  9322.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   O. Y. Choi , K. K. Deng , N. J. Kim , L. Ross , R. Y. Surampalli , Z. Q. Hu , The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008 , 42,  3066.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   E. T. Hwang , J. H. Lee , Y. J. Chae , Y. S. Kim , B. C. Kim , B. I. Sang , M. B. Gu , Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 2008 , 4,  746.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   A. B. Smetana , K. J. Klabunde , G. R. Marchin , C. M. Sorensen , Biocidal activity of nanocrystalline silver powders and particles. Langmuir 2008 , 24,  7457.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   J. Fabrega , S. R. Fawcett , J. C. Renshaw , J. R. Lead , Silver nanoparticle impact upon bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol. 2009 , 43,  7285.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   O. Y. Choi , Z. Q. Hu , Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008 , 42,  4583.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   (a) Hudhomme P., Cousseau J., Plastic solar cells using fullerene derivatives in the photoactive layer, in Fullerenes: Principles and Applications (Eds F. Lang, J. F. Nierengarten) 2007, pp. 221–265 (The Royal Society of Chemistry: Cambridge, UK).
         (b) Bianco A., Da Ros T., Biological applications of fullerenes, in Fullerenes: Principles and Applications (Eds F. Lang, J. F. Nierengarten) 2007, pp. 301–328 (The Royal Society of Chemistry: Cambridge, UK).

[17]   Endo M., Strano M. S., Ajayan P. M., in Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications (Eds A. Jorio, M. S. Dresselhaus, G. Dresselhaus) 2008, pp. 13–62 (Springer-Verlag: Berlin).

[18]   A. Beigbeder , P. Degee , S. L. Conlan , R. J. Mutton , A. S. Clare , M. E. Pettitt , M. E. Callow , J. A. Callow , P. Dubois , Preparation and characterization of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling 2008 , 24,  291.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[19]   D. Y. Lyon , J. D. Fortner , C. M. Sayes , V. L. Colvin , J. B. Hughes , Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ. Toxicol. Chem. 2005 , 24,  2757.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   Y. J. Tang , J. M. Ashcroft , D. Chen , G. W. Min , C. H. Kim , B. Murkhejee , C. Larabell , J. D. Keasling , F. F. Chen , Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Lett. 2007 , 7,  754.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[21]   J. D. Fortner , D. Y. Lyon , C. M. Sayes , A. M. Boyd , J. C. Falkner , E. M. Hotze , L. B. Alemany , Y. J. Tao , et al. C60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol. 2005 , 39,  4307.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[22]   D. Y. Lyon , L. K. Adams , J. C. Falkner , P. J. J. Alvarez , Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ. Sci. Technol. 2006 , 40,  4360.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   S. T. Kang , M. S. Mauter , M. Elimelech , Microbial toxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ. Sci. Technol. 2009 , 43,  2648.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   L. Nyberg , R. F. Turco , L. Nies , Assessing the impact of nanomaterials on anaerobic microbial communities. Environ. Sci. Technol. 2008 , 42,  1938.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[25]   D. Y. Lyon , L. Brunet , G. W. Hinkal , M. R. Wiesner , P. J. J. Alvarez , Antibacterial activity of fullerene water suspensions (C60) is not due to ROS-mediated damage. Nano Lett. 2008 , 8,  1539.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   S. T. Kang , M. Pinault , L. D. Pfefferle , M. Elimelech , Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 2007 , 23,  8670.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[27]   D. Y. Lyon , D. A. Brown , P. J. J. Alvarez , Implications and potential applications of bactericidal fullerene water suspensions: effect of nC60 concentration, exposure conditions and shelf life. Water Sci. Technol. 2008 , 57,  1533.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[28]   E. Oberdorster , Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 2004 , 112,  1058.
        |  CAS | PubMed |  open url image1

[29]   J. P. Kamat , T. P. A. Devasagayam , K. I. Priyadarsini , H. Mohan , Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 2000 , 155,  55.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[30]   G. Tejral , N. R. Panyala , J. Havel , Carbon nanotubes: toxicological impact on human health and environment. J. Appl. Biomed. 2009 , 7,  1.
        |  CAS |  open url image1

[31]   M. Kovochich , B. Espinasse , M. Auffan , E. M. Hotze , L. Wessel , T. Xia , A. E. Nel , M. R. Wiesner , Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Environ. Sci. Technol. 2009 , 43,  6378.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[32]   M. S. Hull , A. J. Kennedy , J. A. Steevens , A. J. Bednar , C. A. Weiss , P. J. Vikesland , Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ. Sci. Technol. 2009 , 43,  4169.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   D. Li , D. Y. Lyon , Q. L. Li , P. J. J. Alvarez , Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Environ. Toxicol. Chem. 2008 , 27,  1888.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   A. Johansen , A. L. Pedersen , K. A. Jensen , U. Karlson , B. M. Hansen , J. J. Scott-Fordsmand , A. Winding , Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ. Toxicol. Chem. 2008 , 27,  1895.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[35]   J. Verran , G. Sandoval , N. S. Allen , M. Edge , J. Stratton , Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension. Dyes Pigments 2007 , 73,  298.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   L. K. Adams , D. Y. Lyon , P. J. J. Alvarez , Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 2006 , 40,  3527.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[37]   L. Brunet , D. Y. Lyon , E. M. Hotze , P. J. J. Alvarez , M. R. Wiesner , Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol. 2009 , 43,  4355.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[38]   G. F. Fu , P. S. Vary , C. T. Lin , Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 2005 , 109,  8889.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[39]   H. D. Jang , S. K. Kim , S. J. Kim , Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 2001 , 3,  141.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[40]   Q. Li , R. C. Xie , Y. W. Li , E. A. Mintz , J. K. Shang , Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium dioxide. Environ. Sci. Technol. 2007 , 41,  5050.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[41]   J. Rawat , S. Rana , M. S. Sorensson , R. D. K. Misra , Anti-microbial activity of doped anatase titania coated nickel ferrite compolsite nanoparticles. Mater. Sci. Technol. 2007 , 23,  97.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   G. Applerot , A. Lipovsky , R. Dror , N. Perkas , Y. Nitzan , R. Lubart , A. Gedanken , Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater. 2009 , 19,  842.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[43]   N. M. Franklin , N. J. Rogers , S. C. Apte , G. E. Batley , G. E. Gadd , P. S. Casey , Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 2007 , 41,  8484.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[44]   M. Heinlaan , A. Ivask , I. Blinova , H. C. Dubourguier , A. Kahru , Toxicity of nanosized and bulk ZnO, CuO, and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyrus. Chemosphere 2008 , 71,  1308.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[45]   Y. T. He , J. M. Wan , T. Tokunaga , Kinetic stability of hematite nanoparticles: the effect of particle sizes. J. Nanopart. Res. 2008 , 10,  321.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[46]   K. A. Dunphy Guzman , M. P. Finnegan , J. F. Banfield , Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol. 2006 , 40,  7688.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[47]   T. R. Thurston , J. P. Wilcoxon , Photooxidation of organic chemicals by nanoscale MoS2. J. Phys. Chem. B 1999 , 103,  11.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[48]   S. Bose , M. F. Hochella , Y. A. Gorby , D. W. Kennedy , D. E. McCready , A. S. Madden , B. H. Lower , Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim. Cosmochim. Acta 2009 , 73,  962.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[49]   N. Jones , B. Ray , K. T. Ranjit , A. C. Manna , Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008 , 279,  71.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[50]   O. Yamamoto , Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001 , 3,  643.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[51]   L. L. Zhang , Y. H. Jiang , Y. L. Ding , M. Povey , D. York , Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 2007 , 9,  479.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[52]   Y. W. Zhang , H. S. Peng , W. Huang , Y. F. Zhou , D. Y. Yan , Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Coll. Interf. Sci. 2008 , 325,  371.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[53]   A. Panáček , L. Kvítek , R. Prucek , M. Kolář , R. Večeřová , N. Pizúrová , V. K. Sharma , T. Nevěčná , R. Zbořil , Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 2006 , 110,  16248.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[54]   J. A. Kloepfer , R. E. Mielke , J. L. Nadeau , Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl. Environ. Microbiol. 2005 , 71,  2548.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[55]   J. Liu , D. M. Aruguete , J. R. Jinschek , J. D. Rimstidt , M. F. Hochella , The non-oxidative dissolution of galena nanocrystals: insights into mineral dissolution rates as a function of grain size, shape, and aggregation state. Geochim. Cosmochim. Acta 2008 , 72,  5984.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[56]   R. Narayanan , M. A. El-Sayed , Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B 2005 , 109,  12663.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[57]   F. Huang , B. Gilbert , H. H. Zhang , J. F. Banfield , Reversible, surface-controlled structure transformation in nanoparticles induced by an aggregation state. Phys. Rev. Lett. 2004 , 92,  155501.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[58]   J. Liu , D. M. Aruguete , M. Murayama , M. F. Hochella , Influence of size and aggregation on the reactivey of an environmentally and industrially relevant nanomaterial (PbS). Environ. Sci. Technol. 2009 , 43,  8178.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[59]   T. Jin , D. Sun , J. Y. Su , H. Zhang , H. J. Sue , Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J. Food Sci. 2009 , 74,  M46.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[60]   I. Velzeboer , A. J. Hendriks , A. M. J. Ragas , D. Van de Meent , Aquatic ecotoxicity tests of some nanomaterials. Environ. Toxicol. Chem. 2008 , 27,  1942.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[61]   S. Kerisit , C. X. Liu , Molecular simulations of water and ion diffusion in nanosized mineral fractures. Environ. Sci. Technol. 2009 , 43,  777.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[62]   G. Oberdörster , V. Stone , K. Donaldson , Toxicology of nanoparticles: a historical perspective. Nanotoxicology 2007 , 1,  2.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[63]   K. Kostarelos , L. Lacerda , G. Pastorin , W. Wu , S. Wieckowski , J. Luangsilvilay , S. Godefroy , D. Patarotto , et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2007 , 2,  108.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[64]   S. Pal , Y. K. Tak , J. M. Song , Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007 , 73,  1712.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[65]   P. M. Ajayan , L. D. Marks , Quasimelting and phases of small particles. Phys. Rev. Lett. 1988 , 60,  585.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[66]   D. W. Hatchett , S. Henry , Electrochemistry of sulfur adlayers on the low-index faces of silver. J. Phys. Chem. 1996 , 100,  9854.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[67]   L. Kvitek , A. Panacek , J. Soukupova , M. Kolar , R. Vecerova , R. Prucek , M. Holecova , R. Zboril , Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 2008 , 112,  5825.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[68]   C. M. Goodman , C. D. McCusker , T. Yilmaz , V. M. Rotello , Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 2004 , 15,  897.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[69]   White D., The Physiology and Biochemistry of Prokaryotes, 3rd edn 2009, pp. 21–35 (Oxford University Press: New York).

[70]   K. Y. Yoon , J. H. Byeon , J. H. Park , J. H. Hwang , Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 2007 , 373,  572.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[71]   J. P. Ruparelia , A. K. Chatterjee , S. P. Duttagupta , S. Mukherji , Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008 , 4,  707.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[72]   P. K. Stoimenov , R. L. Klinger , G. R. Marchin , K. J. Klabunde , Metal oxide nanoparticles as bactericidal agents. Langmuir 2002 , 18,  6679.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[73]   T. J. Beveridge , S. A. Makin , J. L. Kadurugamuwa , Z. S. Li , Interactions between biofilms and the environment. FEMS Microbiol. Rev. 1997 , 20,  291.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[74]   M. E. Davey , G. A. O’Toole , Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 2000 , 64,  847.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[75]   P. Watnick , R. Kolter , Biofilm, city of microbes. J. Bacteriol. 2000 , 182,  2675.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[76]   J. W. Moreau , P. K. Weber , M. C. Martin , B. Gilbert , I. D. Hutcheon , J. F. Banfield , Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 2007 , 316,  1600.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[77]   J. Brant , H. Lecoanet , M. R. Wiesner , Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J. Nanopart. Res. 2005 , 7,  545.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[78]   P. J. Vikesland , A. M. Heathcock , R. L. Rebodos , K. E. Makus , Particle size and aggregation effects on magnetite reactivity towards carbon tetrachloride. Environ. Sci. Technol. 2007 , 41,  5277.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[79]   Z. B. Huang , X. Zheng , D. H. Yan , G. F. Yin , X. M. Liao , Y. Q. Kang , Y. D. Yao , D. Huang , B. Q. Hao , Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 2008 , 24,  4140.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[80]   J. A. Kloepfer , R. E. Mielke , M. S. Wong , K. H. Nealson , G. Stucky , J. L. Nadeau , Quantum dots as strain- and metabolism-specific microbiological labels. Appl. Environ. Microbiol. 2003 , 69,  4205.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[81]   F. Kawai , Microbial degradation of polyethers. Appl. Microbiol. Biotechnol. 2002 , 58,  30.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[82]   K. K. Choi , C. W. Park , S. Y. Kim , W. S. Lyoo , S. H. Lee , J. W. Lee , Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater. J. Microbiol. Biotechnol. 2004 , 14,  1009.
        |  CAS |  open url image1