Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C60 nanoparticles and carbon nanotubes
Kai Loon Chen A D , Billy A. Smith B , William P. Ball A and D. Howard Fairbrother B CA Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, MD 21218-2686, USA.
B Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218-2686, USA.
C Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218-2686, USA.
D Corresponding author. Email: kailoon.chen@jhu.edu
Kai Loon Chen is an Assistant Professor in the Department of Geography and Environmental Engineering at Johns Hopkins University in Baltimore, Maryland. He completed his B.Eng. and M.Eng. degrees in civil engineering at the National University of Singapore in 2001 and 2003 respectively. He joined the Environmental Engineering Program at Yale University in 2003 and received his Ph.D. in 2008. His current research focusses on understanding the fate and transport of engineered nanoparticles in natural and engineered aquatic systems. He is also interested in utilising nanotechnology for water purification and environmental remediation. |
Billy A. Smith is a graduate research assistant pursuing his doctorate in Chemistry in the research group of Professor Howard Fairbrother, Johns Hopkins University (JHU), Baltimore, Maryland. He earned his B.S. in chemistry from Stevenson University (previously known as Villa Julie College) in 2005, and currently holds a masters degree in Chemistry from JHU. In the Fairbrother group, he has used surface analytical techniques in conjunction with time-resolved dynamic light scattering to study the role that oxygen containing functional groups play in determining the colloidal stability and transport properties of oxidised carbon nanotubes. |
William P. Ball (P.E., Ph.D., BCEE) is a Professor of environmental engineering in the Department of Geography and Environmental Engineering at Johns Hopkins University. He received his B.S. from the University of Virginia in 1976 and his M.S. and Ph.D. in environmental engineering from Stanford University in 1977 and 1989. Between his M.S. and Ph.D., Professor Ball worked for six years for James M. Montgomery Consulting Engineers. He was previously on the faculty at Duke University and in 1992 joined the faculty at Johns Hopkins University. Professor Ball’s research program is focussed on physical and chemical processes affecting pollutant fate and treatment in natural environments and engineered systems, with focus on complex aquatic systems. |
D. Howard Fairbrother is a Professor of Chemistry at Johns Hopkins University in Baltimore, Maryland. He received his B.S. degree from Oxford University, England, in 1989, and his Ph.D. in chemistry from Northwestern University in 1994. After completing a postdoctoral position with Professor Gabor Somorjai at the University of California, Berkeley, he joined the faculty in the Chemistry Department at Johns Hopkins University (JHU) in 1997. His research program at JHU is focussed on surface chemistry, with particular emphasis on characterising the functional groups on environmentally relevant materials and understanding the role of surface chemistry on the behaviour of engineered nanomaterials in aquatic environments. |
Environmental Chemistry 7(1) 10-27 https://doi.org/10.1071/EN09112
Submitted: 1 September 2009 Accepted: 11 January 2010 Published: 22 February 2010
Environmental context. The fate and bioavailability of engineered nanoparticles in natural aquatic systems are strongly influenced by their ability to remain dispersed in water. Consequently, understanding the colloidal properties of engineered nanoparticles through rigorous characterisation of physicochemical properties and measurements of particle stability will allow for a more accurate prediction of their environmental, health, and safety effects in aquatic systems. This review highlights some important techniques suitable for the assessment of the colloidal properties of engineered nanoparticles and discusses some recent findings obtained by using these techniques on two popular carbon-based nanoparticles, fullerene C60 and multi-walled carbon nanotubes.
Abstract. The colloidal properties of engineered nanoparticles directly affect their use in a wide variety of applications and also control their environmental fate and mobility. The colloidal stability of engineered nanoparticles depends on their physicochemical properties within the given aqueous medium and is ultimately reflected in the particles’ aggregation and deposition behaviour. This review presents some of the key experimental methods that are currently used to probe colloidal properties and quantify engineered nanoparticle stability in water. Case studies from fullerene C60 nanoparticles and multi-walled carbon nanotubes illustrate how the characterisation and measurement methods are used to understand and predict nanoparticle fate in aquatic systems. Consideration of the comparisons between these two classes of carbon-based nanoparticles provides useful insights into some major current knowledge gaps while also revealing clues about needed future developments. Key issues to be resolved relate to the nature of near-range surface forces and the origins of surface charge, particularly for the reportedly unmodified or ‘pure’ carbon-based nanoparticles.
Additional keywords: aggregation, deposition, DLVO, dynamic light scattering, X-ray photoelectron spectroscopy.
Acknowledgements
K. L. Chen acknowledges financial support from Oak Ridge Associated Universities. D. H. Fairbrother and W. P. Ball acknowledge financial support from the National Science Foundation (grant no. BES0731147), the Environmental Protection Agency (grant no. RD-8338570-0), and the Institute for Nanobiotechnology (INBT) at Johns Hopkins University (JHU). The authors would also like to acknowledge the scientific discussions and insights provided by Professor Charlies O’Melia (Department of Geography and Environmental Engineering, JHU).
[1]
L. C. Qin ,
X. L. Zhao ,
K. Hirahara ,
Y. Miyamoto ,
Y. Ando ,
S. Iijima ,
Materials science – the smallest carbon nanotube.
Nature 2000
, 408, 50.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[Verified 22 January 2010]
[8]
[9]
[10]
J. Theron ,
J. A. Walker ,
T. E. Cloete ,
Nanotechnology and water treatment: applications and emerging opportunities.
Crit. Rev. Microbiol. 2008
, 34, 43.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[Verified 22 January 2010]
[19]
M. S. Mauter ,
M. Elimelech ,
Environmental applications of carbon-based nanomaterials.
Environ. Sci. Technol. 2008
, 42, 5843.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
L. Li ,
Y. Xing ,
Pt-Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts.
J. Phys. Chem. C 2007
, 111, 2803.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
Y. Xing ,
Synthesis and electrochemical characterization of uniformly dispersed high-loading Pt nanoparticles on sonochemically treated carbon nanotubes.
J. Phys. Chem. B 2004
, 108, 19255.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
A. R. Köhler ,
C. Som ,
A. Helland ,
F. Gottschalk ,
Studying the potential release of carbon nanotubes throughout the application life cycle.
J. Clean. Prod. 2008
, 16, 927.
| Crossref | GoogleScholarGoogle Scholar |
[23]
N. C. Mueller ,
B. Nowack ,
Exposure modeling of engineered nanoparticles in the environment.
Environ. Sci. Technol. 2008
, 42, 4447.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[24]
X. Zhu ,
L. Zhu ,
Z. Duan ,
R. Qi ,
Y. Li ,
Y. Lang ,
Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage.
J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2008
, 43, 278.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
S. Kang ,
M. S. Mauter ,
M. Elimelech ,
Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent.
Environ. Sci. Technol. 2009
, 43, 2648.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[26]
S. Kang ,
M. S. Mauter ,
M. Elimelech ,
Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity.
Environ. Sci. Technol. 2008
, 42, 7528.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[27]
B. J. Panessa-Warren ,
M. M. Maye ,
J. B. Warren ,
K. M. Crosson ,
Single-walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure.
Environ. Pollut. 2009
, 157, 1140.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[28]
T. M. Sager ,
D. W. Porter ,
V. A. Robinson ,
W. G. Lindsley ,
D. E. Schwegler-Berry ,
V. Castranova ,
Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity.
Nanotoxicology 2007
, 1, 118.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[29]
[30]
W. L. Yu ,
M. Borkovec ,
Distinguishing heteroaggregation from homoaggregation in mixed binary particle suspensions by multiangle static and dynamic light scattering.
J. Phys. Chem. B 2002
, 106, 13106.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[31]
W. Lin ,
M. Kobayashi ,
M. Skarba ,
C. D. Nu ,
P. Galletto ,
M. Borkovec ,
Heteroaggregation in binary mixtures of oppositely charged colloidal particles.
Langmuir 2006
, 22, 1038.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
P. Galletto ,
W. Lin ,
M. Borkovec ,
Measurement of heteroaggregation rate constants by simultaneous static and dynamic light scattering.
Phys. Chem. Chem. Phys. 2005
, 7, 1464.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[33]
W. L. Yu ,
E. Matijević ,
M. Borkovec ,
Absolute heteroaggregation rate constants by multiangle static and dynamic light scattering.
Langmuir 2002
, 18, 7853.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[34]
K. M. Yao ,
M. M. Habibian ,
C. R. O’Melia ,
Water and waste water filtration – concepts and applications.
Environ. Sci. Technol. 1971
, 5, 1105.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
[36]
B. Smith ,
K. Wepasnick ,
K. E. Schrote ,
A. H. Bertele ,
W. P. Ball ,
C. O’Melia ,
D. H. Fairbrother ,
Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes.
Environ. Sci. Technol. 2009
, 43, 819.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[37]
D. Fornasiero ,
F. Grieser ,
The kinetics of electrolyte-induced aggregation of Carey Lea silver colloids.
J. Colloid Interface Sci. 1991
, 141, 168.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[38]
Z. S. Pillai ,
P. V. Kamat ,
What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?
J. Phys. Chem. B 2004
, 108, 945.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[39]
Y. Rong ,
H. Z. Chen ,
G. Wu ,
M. Wang ,
Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization.
Mater. Chem. Phys. 2005
, 91, 370.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[40]
K. Yang ,
B. S. Xing ,
Sorption of phenanthrene by humic acid-coated nanosized TiO2 and ZnO.
Environ. Sci. Technol. 2009
, 43, 1845.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[41]
L. K. Limbach ,
Y. C. Li ,
R. N. Grass ,
T. J. Brunner ,
M. A. Hintermann ,
M. Muller ,
D. Gunther ,
W. J. Stark ,
Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations.
Environ. Sci. Technol. 2005
, 39, 9370.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[42]
A. K. Gupta ,
M. Gupta ,
Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.
Biomaterials 2005
, 26, 3995.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[43]
[44]
B. V. Derjaguin ,
L. D. Landau ,
Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes.
Acta Physicochim. URSS 1941
, 14, 733.
[45]
[46]
S. H. Behrens ,
M. Borkovec ,
Influence of the secondary interaction energy minimum on the early stages of colloidal aggregation.
J. Colloid Interface Sci. 2000
, 225, 460.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[47]
M. Elimelech ,
C. R. O’Melia ,
Effect of particle-size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers.
Langmuir 1990
, 6, 1153.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[48]
S. H. Behrens ,
M. Borkovec ,
P. Schurtenberger ,
Aggregation in charge-stabilized colloidal suspensions revisited.
Langmuir 1998
, 14, 1951.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[49]
S. H. Behrens ,
D. I. Christl ,
R. Emmerzael ,
P. Schurtenberger ,
M. Borkovec ,
Charging and aggregation properties of carboxyl latex particles: experiments versus DLVO theory.
Langmuir 2000
, 16, 2566.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[50]
D. H. Napper ,
Steric stabilization.
J. Colloid Interface Sci. 1977
, 58, 390.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[51]
E. Dickinson ,
L. Eriksson ,
Particle flocculation by adsorbing polymers.
Adv. Colloid Interface Sci. 1991
, 34, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[52]
M. B. Einarson ,
J. C. Berg ,
Electrosteric stabilization of colloidal latex dispersions.
J. Colloid Interface Sci. 1993
, 155, 165.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[53]
A. Pettersson ,
G. Marino ,
A. Pursiheimo ,
J. B. Rosenholm ,
Electrosteric stabilization of Al2O3, ZrO2, and 3Y-ZrO2 suspensions: effect of dissociation and type of polyelectrolyte.
J. Colloid Interface Sci. 2000
, 228, 73.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[54]
K. L. Chen ,
S. E. Mylon ,
M. Elimelech ,
Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.
Environ. Sci. Technol. 2006
, 40, 1516.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[55]
G. Fritz ,
V. Schadler ,
N. Willenbacher ,
N. J. Wagner ,
Electrosteric stabilization of colloidal dispersions.
Langmuir 2002
, 18, 6381.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[56]
I. Yildiz ,
B. McCaughan ,
S. F. Cruickshank ,
J. F. Callan ,
F. M. Raymo ,
Biocompatible CdSe-ZnS core-shell quantum dots coated with hydrophilic polythiols.
Langmuir 2009
, 25, 7090.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[57]
W. W. Yu ,
E. Chang ,
J. C. Falkner ,
J. Y. Zhang ,
A. M. Al-Somali ,
C. M. Sayes ,
J. Johns ,
R. Drezek ,
V. L. Colvin ,
Forming biocompatible and non-aggregated nanocrystals in water using amphiphilic polymers.
J. Am. Chem. Soc. 2007
, 129, 2871.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[58]
T. Phenrat ,
N. Saleh ,
K. Sirk ,
H. J. Kim ,
R. D. Tilton ,
G. V. Lowry ,
Stabilization of aqueous nanoscale zero-valent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation.
J. Nanopart. Res. 2008
, 10, 795.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[59]
A. Tiraferri ,
K. L. Chen ,
R. Sethi ,
M. Elimelech ,
Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.
J. Colloid Interface Sci. 2008
, 324, 71.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[60]
S. R. Kanel ,
R. R. Goswami ,
T. P. Clement ,
M. O. Barnett ,
D. Zhao ,
Two-dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media.
Environ. Sci. Technol. 2008
, 42, 896.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[61]
H. H. Huang ,
X. P. Ni ,
G. L. Loy ,
C. H. Chew ,
K. L. Tan ,
F. C. Loh ,
J. F. Deng ,
G. Q. Xu ,
Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone).
Langmuir 1996
, 12, 909.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[62]
L. Quaroni ,
G. Chumanov ,
Preparation of polymer-coated functionalized silver nanoparticles.
J. Am. Chem. Soc. 1999
, 121, 10642.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[63]
C. L. Tiller ,
C. R. O’Melia ,
Natural organic-matter and colloidal stability – models and measurements.
Colloids Surf. A Physicochem. Eng. Asp. 1993
, 73, 89.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[64]
E. Tipping ,
D. C. Higgins ,
The effect of adsorbed humic substances on the colloid stability of hematite particles.
Colloids Surf. 1982
, 5, 85.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[65]
R. Amal ,
J. A. Raper ,
T. D. Waite ,
Effect of fulvic acid adsorption on the aggregation kinetics and structure of hematite particles.
J. Colloid Interface Sci. 1992
, 151, 244.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[66]
I. Heidmann ,
I. Christl ,
R. Kretzschmar ,
Aggregation kinetics of kaolinite–fulvic acid colloids as affected by the sorption of Cu and Pb.
Environ. Sci. Technol. 2005
, 39, 807.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[67]
J. Buffle ,
K. J. Wilkinson ,
S. Stoll ,
M. Filella ,
J. W. Zhang ,
A generalized description of aquatic colloidal interactions: the three-colloidal component approach.
Environ. Sci. Technol. 1998
, 32, 2887.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[68]
[69]
G. G. Leppard ,
Nanoparticles in the environment as revealed by transmission electron microscopy: detection, characterisation and activities.
Current Nanoscience 2008
, 4, 278.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[70]
[71]
Y. Sun ,
Y. Xia ,
Shape-controlled synthesis of gold and silver nanoparticles.
Science 2002
, 298, 2176.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[72]
J. R. Lead ,
K. J. Wilkinson ,
Aquatic colloids and nanoparticles: current knowledge and future trends.
Environ. Chem. 2006
, 3, 159.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[73]
C. N. R. Rao ,
K. Biswas ,
Characterization of nanomaterials by physical methods.
Annu. Rev. Anal. Chem. 2009
, 2, 435.
|
CAS |
[74]
H. Yang ,
P. H. Holloway ,
Enhanced photoluminescence from CdS : Mn/ZnS core/shell quantum dots.
Appl. Phys. Lett. 2003
, 82, 1965.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[75]
H. W. Kim ,
S. H. Shim ,
Branched structures of tin oxide one-dimensional nanomaterials.
Vacuum 2008
, 82, 1395.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[76]
H. J. Lee ,
S. Y. Yeo ,
S. H. Jeong ,
Antibacterial effect of nanosized silver colloidal solution on textile fabrics.
J. Mater. Sci. 2003
, 38, 2199.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[77]
R. H. Yang ,
L. W. Chang ,
J. P. Wu ,
M. H. Tsai ,
H. J. Wang ,
Y. C. Kuo ,
T. K. Yeh ,
C. S. Yang ,
P. Lin ,
Persistent tissue kinetics and redistribution of nanoparticles, Quantum Dot 705, in mice: ICP-MS quantitative assessment.
Environ. Health Perspect. 2007
, 115, 1339.
|
CAS |
PubMed |
[78]
C. Baleizão ,
B. Gigante ,
H. Garcia ,
A. Corma ,
Vanadyl salen complexes covalently anchored to single-wall carbon nanotubes as heterogeneous catalysts for the cyanosilylation of aldehydes.
J. Catal. 2004
, 221, 77.
| Crossref | GoogleScholarGoogle Scholar |
[79]
[80]
L. A. Langley ,
D. H. Fairbrother ,
Effect of wet chemical treatments on the distribution of surface oxides on carbonaceous materials.
Carbon 2007
, 45, 47.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[81]
L. A. Langley ,
D. E. Villanueva ,
D. H. Fairbrother ,
Quantification of surface oxides on carbonaceous materials.
Chem. Mater. 2006
, 18, 169.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[82]
N. M. Washton ,
S. L. Brantley ,
K. T. Mueller ,
Probing the molecular-level control of aluminosilicate dissolution: a sensitive solid-state NOM proxy for reactive surface area.
Geochim. Cosmochim. Acta 2008
, 72, 5949.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[83]
T. Preoanin ,
N. Kallay ,
Application of ‘mass titration’ to determination of surface charge of metal oxides.
Croat. Chem. Acta 1998
, 71, 1117.
[84]
S. Brunauer ,
P. H. Emmett ,
E. Teller ,
Adsorption of gases in multimolecular layers.
J. Am. Chem. Soc. 1938
, 60, 309.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[85]
F. Li ,
Y. Wang ,
D. Wang ,
F. Wei ,
Characterization of single-wall carbon nanotubes by N2 adsorption.
Carbon 2004
, 42, 2375.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[86]
B. Smith ,
K. Wepasnick ,
K. E. Schrote ,
H. H. Cho ,
W. P. Ball ,
D. H. Fairbrother ,
Influence of surface oxides on the colloidal stability of multiwalled carbon nanotubes: a structure–property relationship.
Langmuir 2009
, 25, 9767.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[87]
R. H. Ottewill ,
J. N. Shaw ,
Electrophoretic studies on polystyrene latices.
J. Electroanal. Chem. 1972
, 37, 133.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[88]
Y. P. Sun ,
X. Q. Li ,
W. X. Zhang ,
H. P. Wang ,
A method for the preparation of stable dispersion of zero-valent iron nanoparticles.
Colloids Surf. 2007
, 308, 60.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[89]
M. L. Usrey ,
N. Nair ,
D. E. Agnew ,
C. F. Pina ,
M. S. Strano ,
Controlling the electrophoretic mobility of single-walled carbon nanotubes: a comparison of theory and experiment.
Langmuir 2007
, 23, 7768.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[90]
H. J. Butt ,
B. Cappella ,
M. Kappl ,
Force measurements with the atomic force microscope: technique, interpretation and applications.
Surf. Sci. Rep. 2005
, 59, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[91]
W. A. Ducker ,
T. J. Senden ,
R. M. Pashley ,
Direct measurement of colloidal forces using an atomic force microscope.
Nature 1991
, 353, 239.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[92]
Q. K. Ong ,
I. Sokojov ,
Attachment of nanoparticles to the AFM tips for direct measurements of interaction between a single nanoparticle and surfaces.
J. Colloid Interface Sci. 2007
, 310, 385.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[93]
S. Akita ,
Y. Nakayama ,
S. Mizooka ,
Y. Takano ,
T. Okawa ,
Y. Miyatake ,
S. Yamanaka ,
M. Tsuji ,
T. Nosaka ,
Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope.
Appl. Phys. Lett. 2001
, 79, 1691.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[94]
H. J. Dai ,
J. H. Hafner ,
A. G. Rinzler ,
D. T. Colbert ,
R. E. Smalley ,
Nanotubes as nanoprobes in scanning probe microscopy.
Nature 1996
, 384, 147.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[95]
K. L. Chen ,
S. E. Mylon ,
M. Elimelech ,
Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations.
Langmuir 2007
, 23, 5920.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[96]
J. Rarity ,
Flocculation – colloids stick to fractal rules.
Nature 1989
, 339, 340.
| Crossref | GoogleScholarGoogle Scholar |
[97]
M. Y. Lin ,
H. M. Lindsay ,
D. A. Weitz ,
R. C. Ball ,
R. Klein ,
P. Meakin ,
Universality in colloid aggregation.
Nature 1989
, 339, 360.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[98]
D. A. Weitz ,
J. S. Huang ,
M. Y. Lin ,
J. Sung ,
Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids.
Phys. Rev. Lett. 1985
, 54, 1416.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[99]
Z. K. Zhou ,
P. Q. Wu ,
B. J. Chu ,
Cationic surfactant-induced fractal silica aggregates – a light-scattering study.
J. Colloid Interface Sci. 1991
, 146, 541.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[100]
R. Amal ,
J. A. Raper ,
T. D. Waite ,
Fractal structure of hematite aggregates.
J. Colloid Interface Sci. 1990
, 140, 158.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[101]
J. W. Zhang ,
J. Buffle ,
Multi-method determination of the fractal dimension of hematite aggregates.
Colloid. Surface A 1996
, 107, 175.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[102]
Z. K. Zhou ,
B. J. Chu ,
Light-scattering study on the fractal aggregates of polystyrene spheres – kinetic and structural approaches.
J. Colloid Interface Sci. 1991
, 143, 356.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[103]
Q. Chen ,
C. Saltiel ,
S. Manickavasagam ,
L. S. Schadler ,
R. W. Siegel ,
H. C. Yang ,
Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension.
J. Colloid Interface Sci. 2004
, 280, 91.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[104]
A. Y. Kim ,
J. C. Berg ,
Fractal heteroaggregation of oppositely charged colloids.
J. Colloid Interface Sci. 2000
, 229, 607.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[105]
J. M. López-López ,
A. Schmitt ,
A. Moncho-Jordá ,
R. Hidalgo-Álvarez ,
Stability of binary colloids: kinetic and structural aspects of heteroaggregation processes.
Soft Matter 2006
, 2, 1025.
| Crossref | GoogleScholarGoogle Scholar |
[106]
M. A. Chappell ,
A. J. George ,
K. M. Dontsova ,
B. E. Porter ,
C. L. Price ,
P. Zhou ,
E. Morikawa ,
A. J. Kennedy ,
J. A. Steevens ,
Surfactive stabilization of multiwalled carbon nanotube dispersions with dissolved humic substances.
Environ. Pollut. 2009
, 157, 1081.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[107]
T. Phenrat ,
N. Saleh ,
K. Sirk ,
R. D. Tilton ,
G. V. Lowry ,
Aggregation and sedimentation of aqueous nanoscale zero-valent iron dispersions.
Environ. Sci. Technol. 2007
, 41, 284.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[108]
A. S. Teot ,
S. L. Daniels ,
Flocculation of negatively charged colloids by inorganic cations and anionic polyelectrolytes.
Environ. Sci. Technol. 1969
, 3, 825.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[109]
A. N. Giordano ,
H. Chaturvedi ,
J. C. Poler ,
Critical coagulation concentrations for carbon nanotubes in non-aqueous solvent.
J. Phys. Chem. C 2007
, 111, 11583.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[110]
M. Sano ,
J. Okamura ,
S. Shinkai ,
Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schulze–Hardy Rule.
Langmuir 2001
, 17, 7172.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[111]
B. Tezak ,
E. Matijević ,
K. Schulz ,
Coagulation of hydrophobic sols in statu nascendi. I. Determination of coagulation values.
J. Phys. Chem. 1951
, 55, 1557.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[112]
H. Holthoff ,
S. U. Egelhaaf ,
M. Borkovec ,
P. Schurtenberger ,
H. Sticher ,
Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering.
Langmuir 1996
, 12, 5541.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[113]
K. L. Chen ,
M. Elimelech ,
Aggregation and deposition kinetics of fullerene (C60) nanoparticles.
Langmuir 2006
, 22, 10994.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[114]
Y. T. He ,
J. Wan ,
T. Tokunaga ,
Kinetic stability of hematite nanoparticles: the effect of particle sizes.
J. Nanopart. Res. 2008
, 10, 321.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[115]
G. Sauerbrey ,
Verwendung von Schwingquarzen zur Wagung Dunner Schichten und zur Mikrowagung.
Z. Phys. 1959
, 155, 206.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[116]
S. A. Bradford ,
S. R. Yates ,
M. Bettahar ,
J. Simunek ,
Physical factors affecting the transport and fate of colloids in saturated porous media.
Water Resour. Res. 2002
, 38, 1327.
| Crossref | GoogleScholarGoogle Scholar |
[117]
S. A. Bradford ,
J. Simunek ,
M. Bettahar ,
M. T. Van Genuchten ,
S. R. Yates ,
Modeling colloid attachment, straining, and exclusion in saturated porous media.
Environ. Sci. Technol. 2003
, 37, 2242.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[118]
K. L. Chen ,
M. Elimelech ,
Interaction of fullerene (C60) nanoparticles with humic acid and alginate-coated silica surfaces: measurements, mechanisms, and environmental implications.
Environ. Sci. Technol. 2008
, 42, 7607.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[119]
J. Fatisson ,
R. F. Domingos ,
K. J. Wilkinson ,
N. Tufenkji ,
Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring.
Langmuir 2009
, 25, 6062.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[120]
I. R. Quevedo ,
N. Tufenkji ,
Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance.
Environ. Sci. Technol. 2009
, 43, 3176.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[121]
B. L. Yuan ,
M. Pham ,
T. H. Nguyen ,
Deposition kinetics of bacteriophage MS2 on a silica surface coated with natural organic matter in a radial stagnation point flow cell.
Environ. Sci. Technol. 2008
, 42, 7628.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[122]
K. M. Sirk ,
N. B. Saleh ,
T. Phenrat ,
H. J. Kim ,
B. Dufour ,
J. Ok ,
P. L. Golas ,
K. Matyjaszewski ,
G. V. Lowry ,
R. D. Tilton ,
Effect of adsorbed polyelectrolytes on nanoscale zero-valent iron particle attachment to soil surface models.
Environ. Sci. Technol. 2009
, 43, 3803.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[123]
N. Saleh ,
K. Sirk ,
Y. Q. Liu ,
T. Phenrat ,
B. Dufour ,
K. Matyjaszewski ,
R. D. Tilton ,
G. V. Lowry ,
Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media.
Environ. Eng. Sci. 2007
, 24, 45.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[124]
H. W. Kroto ,
J. R. Heath ,
S. C. Obrien ,
R. F. Curl ,
R. E. Smalley ,
C60: buckminsterfullerene.
Nature 1985
, 318, 162.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[125]
A. W. Jensen ,
S. R. Wilson ,
D. I. Schuster ,
Biological applications of fullerenes.
Bioorg. Med. Chem. 1996
, 4, 767.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[126]
Q. C. Ying ,
J. Zhang ,
D. H. Liang ,
W. Nakanishi ,
H. Isobe ,
E. Nakamura ,
B. Chu ,
Fractal behavior of functionalized fullerene aggregates. I. Aggregation of two-handed tetraaminofullerene with DNA.
Langmuir 2005
, 21, 9824.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[127]
R. G. Alargova ,
S. Deguchi ,
K. Tsujii ,
Stable colloidal dispersions of fullerenes in polar organic solvents.
J. Am. Chem. Soc. 2001
, 123, 10460.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[128]
C. M. Sayes ,
J. D. Fortner ,
W. Guo ,
D. Lyon ,
A. M. Boyd ,
K. D. Ausman ,
Y. J. Tao ,
B. Sitharaman ,
et al. The differential cytotoxicity of water-soluble fullerenes.
Nano Lett. 2004
, 4, 1881.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[129]
J. D. Fortner ,
D. Y. Lyon ,
C. M. Sayes ,
A. M. Boyd ,
J. C. Falkner ,
E. M. Hotze ,
L. B. Alemany ,
Y. J. Tao ,
et al. C60 in water: nanocrystal formation and microbial response.
Environ. Sci. Technol. 2005
, 39, 4307.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[130]
S. J. Klaine ,
P. J. J. Alvarez ,
G. E. Batley ,
T. F. Fernandes ,
R. D. Handy ,
D. Y. Lyon ,
S. Mahendra ,
M. J. McLaughlin ,
J. R. Lead ,
Nanomaterials in the environment: behavior, fate, bioavailability, and effects.
Environ. Toxicol. Chem. 2008
, 27, 1825.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[131]
R. D. Handy ,
F. von der Kammer ,
J. R. Lead ,
M. Hassellov ,
R. Owen ,
M. Crane ,
The ecotoxicology and chemistry of manufactured nanoparticles.
Ecotoxicology 2008
, 17, 287.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[132]
W. A. Scrivens ,
J. M. Tour ,
K. E. Creek ,
L. Pirisi ,
Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human keratinocytes.
J. Am. Chem. Soc. 1994
, 116, 4517.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[133]
A. Dhawan ,
J. S. Taurozzi ,
A. K. Pandey ,
W. Q. Shan ,
S. M. Miller ,
S. A. Hashsham ,
V. V. Tarabara ,
Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity.
Environ. Sci. Technol. 2006
, 40, 7394.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[134]
X. K. Cheng ,
A. T. Kan ,
M. B. Tomson ,
Naphthalene adsorption and desorption from aqueous C60 fullerene.
J. Chem. Eng. Data 2004
, 49, 675.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[135]
D. Bouchard ,
X. Ma ,
C. Isaacson ,
Colloidal properties of aqueous fullerenes: isoelectric points and aggregation kinetics of C60 and C60 derivatives.
Environ. Sci. Technol. 2009
, 43, 6597.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[136]
K. L. Chen ,
M. Elimelech ,
Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties.
Environ. Sci. Technol. 2009
, 43, 7270.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[137]
L. K. Duncan ,
J. R. Jinschek ,
P. J. Vikesland ,
C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge.
Environ. Sci. Technol. 2008
, 42, 173.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[138]
J. A. Brant ,
J. Labille ,
J. Y. Bottero ,
M. R. Wiesner ,
Characterizing the impact of preparation method on fullerene cluster structure and chemistry.
Langmuir 2006
, 22, 3878.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[139]
D. Jakubczyk ,
G. Derkachov ,
W. Bazhan ,
E. Lusakowska ,
K. Kolwas ,
M. Kolwas ,
Study of microscopic properties of water fullerene suspensions by means of resonant light scattering analysis.
J. Phys. D Appl. Phys. 2004
, 37, 2918.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[140]
J. Labille ,
A. Masion ,
F. Ziarelli ,
J. Rose ,
J. Brant ,
F. Villieras ,
M. Pelletier ,
D. Borschneck ,
M. R. Wiesner ,
J. Y. Bottero ,
Hydration and dispersion of C60 in aqueous systems: the nature of water–fullerene interactions.
Langmuir 2009
, 25, 11232.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[141]
G. V. Andrievsky ,
M. V. Kosevich ,
O. M. Vovk ,
V. S. Shelkovsky ,
L. A. Vashchenko ,
On the production of an aqueous colloidal solution of fullerenes.
J. Chem. Soc. Chem. Commun. 1995
, 12, 1281.
| Crossref | GoogleScholarGoogle Scholar |
[142]
N. O. Mchedlov-Petrossyan ,
V. K. Klochkov ,
G. V. Andrievsky ,
Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes.
J. Chem. Soc., Faraday Trans. 1997
, 93, 4343.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[143]
S. Deguchi ,
R. G. Alargova ,
K. Tsujii ,
Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization.
Langmuir 2001
, 17, 6013.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[144]
J. Brant ,
H. Lecoanet ,
M. Hotze ,
M. Wiesner ,
Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures.
Environ. Sci. Technol. 2005
, 39, 6343.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[145]
X. Ma ,
D. Bouchard ,
Formation of aqueous suspensions of fullerenes.
Environ. Sci. Technol. 2009
, 43, 330.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[146]
Y. G. Wang ,
Y. S. Li ,
K. D. Pennell ,
Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands.
Environ. Toxicol. Chem. 2008
, 27, 1860.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[147]
B. Espinasse ,
E. M. Hotze ,
M. R. Wiesner ,
Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method.
Environ. Sci. Technol. 2007
, 41, 7396.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[148]
M. Terashima ,
S. Nagao ,
Solubilization of [60]fullerene in water by aquatic humic substances.
Chem. Lett. 2007
, 36, 302.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[149]
B. Xie ,
Z. H. Xu ,
W. H. Guo ,
Q. L. Li ,
Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles.
Environ. Sci. Technol. 2008
, 42, 2853.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[150]
T. E. Chang ,
L. R. Jensen ,
A. Kisliuk ,
R. B. Pipes ,
R. Pyrz ,
A. P. Sokolov ,
Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite.
Polymer 2005
, 46, 439.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[151]
R. H. Baughman ,
A. A. Zakhidov ,
W. A. de Heer ,
Carbon nanotubes – the route toward applications.
Science 2002
, 297, 787.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[152]
R. P. Raffaelle ,
B. J. Landi ,
J. D. Harris ,
S. G. Bailey ,
A. F. Hepp ,
Carbon nanotubes for power applications.
Mater. Sci. Eng. B 2005
, 116, 233.
| Crossref | GoogleScholarGoogle Scholar |
[153]
S. Banerjee ,
S. S. Wong ,
Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis.
J. Phys. Chem. B 2002
, 106, 12144.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[154]
Y. Peng ,
H. Liu ,
Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes.
Ind. Eng. Chem. Res. 2006
, 45, 6483.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[155]
I. D. Rosca ,
F. Watari ,
M. Uo ,
T. Akasaka ,
Oxidation of multiwalled carbon nanotubes by nitric acid.
Carbon 2005
, 43, 3124.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[156]
H. Hiura ,
T. W. Ebbesen ,
K. Tanigaki ,
Opening and purification of carbon nanotubes in high yields.
Adv. Mater. 1995
, 7, 275.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[157]
H. Hu ,
A. Yu ,
E. Kim ,
B. Zhao ,
M. E. Itkis ,
E. Bekyarova ,
R. C. Haddon ,
Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes.
J. Phys. Chem. B 2005
, 109, 11520.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[158]
N. B. Saleh ,
L. D. Pfefferle ,
M. Elimelech ,
Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications.
Environ. Sci. Technol. 2008
, 42, 7963.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[159]
H. S. Lee ,
C. H. Yun ,
Translational and rotational diffusions of multiwalled carbon nanotubes with static bending.
J. Phys. Chem. C 2008
, 112, 10653.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[160]
[161]
A. Schierz ,
H. Zänker ,
Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption.
Environ. Pollut. 2009
, 157, 1088.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[162]
M. Cox ,
A. A. Pichugin ,
E. I. El-Shafey ,
Q. Appleton ,
Sorption of precious metals onto chemically prepared carbon from flax shive.
Hydrometallurgy 2005
, 78, 137.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[163]
M. Li ,
M. Boggs ,
T. P. Beebe ,
C. P. Huang ,
Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound.
Carbon 2008
, 46, 466.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[164]
K. Esumi ,
M. Ishigami ,
A. Nakajima ,
K. Sawada ,
H. Honda ,
Chemical treatment of carbon nanotubes.
Carbon 1996
, 34, 279.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[165]
Y.-T. Shieh ,
G.-L. Liu ,
H.-H. Wu ,
C.-C. Lee ,
Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media.
Carbon 2007
, 45, 1880.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[166]
[167]
H. Hyung ,
J. D. Fortner ,
J. B. Hughes ,
J.-H. Kim ,
Natural organic matter stabilizes carbon nanotubes in the aqueous phase.
Environ. Sci. Technol. 2007
, 41, 179.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[168]
D. Lin ,
B. Xing ,
Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions.
Environ. Sci. Technol. 2008
, 42, 5917.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[169]
H. Hyung ,
J.-H. Kim ,
Natural organic matter (NOM) adsorption to multiwalled carbon nanotubes: effect of NOM characteristics and water quality parameters.
Environ. Sci. Technol. 2008
, 42, 4416.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[170]
X. Wang ,
S. Tao ,
B. Xing ,
Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes.
Environ. Sci. Technol. 2009
, 43, 6214.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[171]
K. Yang ,
B. S. Xing ,
Adsorption of fulvic acid by carbon nanotubes from water.
Environ. Pollut. 2009
, 157, 1095.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[172]
M. Elimelech ,
C. R. O’Melia ,
Effect of electrolyte type on the electrophoretic mobility of polystyrene latex colloids.
Colloids Surf. 1990
, 44, 165.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[173]
W. C. Hou ,
C. T. Jafvert ,
Photochemistry of aqueous C60 clusters: evidence of 1O2 formation and its role in mediating C60 phototransformation.
Environ. Sci. Technol. 2009
, 43, 5257.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[174]
Q. L. Li ,
B. Xie ,
Y. S. Hwang ,
Y. J. Xu ,
Kinetics of C60 fullerene dispersion in water enhanced by natural organic matter and sunlight.
Environ. Sci. Technol. 2009
, 43, 3574.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[175]
H. Hyung ,
J. H. Kim ,
Dispersion of C60 in natural water and removal by conventional drinking water treatment processes.
Water Res. 2009
, 43, 2463.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[176]
C. Y. Wang ,
C. Bottcher ,
D. W. Bahnemann ,
J. K. Dohrmann ,
A comparative study of nanometer-sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity.
J. Mater. Chem. 2003
, 13, 2322.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[177]
J. H. Choi ,
F. T. Nguyen ,
P. W. Barone ,
D. A. Heller ,
A. E. Moll ,
D. Patel ,
S. A. Boppart ,
M. S. Strano ,
Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes.
Nano Lett. 2007
, 7, 861.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[178]
L. F. Shen ,
A. Stachowiak ,
S. E. K. Fateen ,
P. E. Laibinis ,
T. A. Hatton ,
Structure of alkanoic acid stabilized magnetic fluids. A small-angle neutron and light scattering analysis.
Langmuir 2001
, 17, 288.
| Crossref | GoogleScholarGoogle Scholar |
CAS |