Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Interaction of CdSe/CdS core-shell quantum dots and Pseudomonas aeruginosa

Deborah M. Aruguete A D , Jeremy S. Guest B , William W. Yu C , Nancy G. Love B and Michael F. Hochella Jr. A
+ Author Affiliations
- Author Affiliations

A Center for NanoBioEarth, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA.

B Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

C Department of Chemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA.

D Corresponding author. Email: aruguete@vt.edu

Environmental Chemistry 7(1) 28-35 https://doi.org/10.1071/EN09106
Submitted: 24 August 2009  Accepted: 19 January 2010   Published: 22 February 2010

Environmental context. The growing use of nanotechnology means that nanomaterials are likely to be released into the environment, and their impact upon microbes, which form the biological foundation of all ecosystems, remains unclear. To understand how nanomaterials might affect bacteria in the environment, the interactions between a commercially-relevant quantum dot and a common soil and water bacterium was investigated. In this case, it was found that these quantum dots are non-toxic to these bacteria, and also that these bacteria do not cause degradation of the quantum dots. This study also has implications related to the environmental fate of quantum dots.

Abstract. Polymer-encapsulated CdSe/CdS core-shell quantum dots, which closely model commercially-available quantum dots, were tested for toxic effects on Pseudomonas aeruginosa. The size, aggregation state, and dissolution of the quantum dots were characterised before and after exposure to bacteria. The physical association of quantum dots with bacterial cells was also examined. The quantum dots were found to have no effect upon bacterial viability. They remained chemically stable and dispersed in solution even with bacterial exposure. It is suggested that the absence of toxicity is the result of the stability of the quantum dots due to their protective polymer coatings, and their apparent lack of association with bacterial cells. The stability of the quantum dots, even in the presence of the bacteria, as well as their non-toxicity has implications for their environmental behaviour and ultimate fate.

Additional keywords: bacterial toxicity, engineered nanomaterials, inorganic nanoparticles.


Acknowledgements

This work was supported by the National Science Foundation under a Minority Postdoctoral Research Fellowship, award 0610373, and also in part by the National Science Foundation and the Environmental Protection Agency under NSF Cooperative Agreement Number EF-0830093, Center for the Environmental Implications of NanoTechnology (CEINT). We thank Professor Richey Davis, William C. Miles, and Raquel Mejia for the use of the DLS and useful discussions. We also thank Professor Jeffrey Kuhn and Professor Amy Pruden for the use of various laboratory equipment and instruments. Dr James Fabiyi and Professor Chip Frazier measured the media viscosity, for which we are grateful. Claudia Brodkin kindly provided access to laboratory facilities in the Virginia Tech department of chemistry. Statistics assistance was provided by the Virginia Tech Laboratory for Interdisciplinary Statistical Analysis.


References


[1]   W. B. Whitman , D. C. Coleman , W. J. Wiebe , Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 1998 , 95,  6578.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[2]   P. J. J. Alvarez , V. L. Colvin , J. Lead , V. Stone , Research priorities to advance eco-responsible nanotechnology. ACS Nano 2009 , 3,  1616.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   M. Heinlaan , A. Ivask , I. Blinova , H. C. Dubourguier , A. Kahru , Toxicity of nanosized and bulk ZnO, CuO, and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus Chemosphere 2008 , 71,  1308.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   R. Stepanauskas , T. C. Glenn , C. H. Jagoe , R. C. Tuckfield , A. H. Lindell , C. J. King , J. V. McArthur , Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ. Microbiol. 2006 , 8,  1510.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[5]   C. Hardalo , S. C. Edberg , Pseudomonas aeruginosa: assessment of risk from drinking water. Crit. Rev. Microbiol. 1997 , 23,  47.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   N. Lewinski , V. L. Colvin , R. Drezek , Cytotoxicity of nanoparticles. Small 2008 , 4,  26.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[7]   R. Hardman , A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006 , 114,  165.
        | PubMed |  open url image1

[8]   E. Chang , N. Thekkek , W. W. Yu , V. L. Colvin , R. Drezek , Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2006 , 2,  1412.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   W. Z. Guo , W. Liu , J. G. Liang , Z. He , H. Xu , X. L. Yang , Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater. Lett. 2007 , 61,  1641.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   A. O. Choi , S. J. Cho , J. Desbarats , J. Lovric , D. Maysinger , Quantum dot-induced cell dealth involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J. Nanobiotechnology 2007 , 5,  1.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[11]   J. P. Ryman-Rasmussen , J. E. Riviere , N. A. Monteiro-Riviere , Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J. Invest. Dermatol. 2006 , 127,  143.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[12]   E. M. Dumas , V. Ozenne , R. E. Mielke , J. L. Nadeau , Toxicity of CdTe quantum dots in bacterial strains. IEEE Trans. Nanobioscience 2009 , 8,  58.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[13]   J. A. Kloepfer , R. E. Mielke , J. L. Nadeau , Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl. Environ. Microbiol. 2005 , 71,  2548.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   J. A. Kloepfer , R. E. Mielke , M. S. Wong , K. H. Nealson , G. Stucky , J. L. Nadeau , Quantum dots as strain- and metabolism-specific microbiological labels. Appl. Environ. Microbiol. 2005 , 71,  2548.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   Z. S. Lu , C. M. Li , H. F. Bao , Y. Qiao , Y. H. Toh , X. Yang , Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 2008 , 24,  5445.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   C. Park , D. H. Kim , M. J. Kim , T. H. Yoon , Preparation, characterization and toxicological impacts of monodisperse quantum dot nanocolloids in aqueous solution. Bull. Korean Chem. Soc. 2008 , 29,  303.
        |  CAS |  open url image1

[17]   J. H. Priester , P. K. Stoimenov , R. E. Mielke , S. M. Webb , C. Ehrhardt , J. P. Zhang , G. D. Stucky , P. A. Holden , Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environ. Sci. Technol. 2009 , 43,  2589.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[18]   R. Schneider , C. Wolpert , H. Guilloteau , L. Balan , J. Lambert , C. Merlin , The exposure of bacteria to CdTe-core quantum dots: the importance of surface chemistry on cytotoxicity. Nanotechnology 2009 , 20,  225101.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[19]   S. Mahendra , H. G. Zhu , V. L. Colvin , P. J. Alvarez , Quantum dot weathering results in microbial toxicity. Environ. Sci. Technol. 2008 , 42,  9424.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   V. I. Slaveykova , K. Startchev , J. Roberts , Amine- and carboxyl- quantum dots affect membrane integrity of bacterium Cupriavidus metallidurans CH34. Environ. Sci. Technol. 2009 , 43,  5117.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[21]   S. Dwarakanath , J. G. Bruno , T. N. Athmaram , G. Bali , D. Vattem , P. Rao , Antibody-quantum dot conjugates exhibit enhanced antibacterial effect vs. unconjugated quantum dots. Folia Microbiol. (Praha) 2007 , 52,  31.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[22]   W. W. Yu , E. Chang , J. C. Falkner , J. Y. Zhang , A. M. Al-Somali , C. M. Sayes , J. Johns , R. Drezek , V. L. Colvin , Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J. Am. Chem. Soc. 2007 , 129,  2871.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   J. S. Angle , R. L. Chaney , Cadmium resistance screening in nitrilotriacetate-buffered minimal media. Appl. Environ. Microbiol. 1989 , 55,  2101.
        |  CAS | PubMed |  open url image1

[24]   B. Dubertret , P. Skourides , D. J. Norris , V. Noireaux , A. H. Brivanlou , A. Libchaber , In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002 , 298,  1759.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[25]   D. R. Larson , W. R. Zipfel , R. M. Williams , S. W. Clark , M. P. Bruchez , F. W. Wise , W. W. Webb , Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003 , 300,  1434.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   B. Ballou , C. Langerholm , L. Ernst , M. P. Bruchez , A. Waggoner , Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 2004 , 15,  79.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[27]   O. Andersen , Chelation of Cd. Environ. Health Perspect. 1984 , 54,  249.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[28]   W. W. Yu , L. H. Qu , W. Z. Guo , X. G. Peng , Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003 , 15,  2854.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   X. G. Peng , J. Wickham , A. P. Alivisatos , Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: ‘focusing’ of size distributions. J. Am. Chem. Soc. 1998 , 120,  5343.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   A. P. Alivisatos , Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996 , 100,  13226.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[31]   J. J. Li , Y. A. Yang , W. Z. Guo , J. C. Keay , T. D. Mishima , M. B. Johnson , X. G. Peng , Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003 , 125,  12567.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[32]   A. M. Smith , H. W. Duan , M. N. Rhyner , G. Ruan , S. M. Nie , A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys. Chem. Chem. Phys. 2006 , 8,  3895.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   B. I. Ipe , M. Lehnig , C. M. Niemeyer , On the generation of free radical species from quantum dots. Small 2005 , 1,  706.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   R. Bakalova , H. Ohba , Z. Zhelev , T. Nagase , R. Jose , M. Ishikawa , Y. Baba , Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett. 2004 , 4,  1567.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   A. C. S. Samia , X. Chen , C. Burda , Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 2003 , 125,  15736.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[36]   M. D. Hirschey , Y. J. Han , G. D. Stucky , A. Butler , Imaging Escherichia coli using functionalized core/shell CdSe/CdS quantum dots. J. Biol. Inorg. Chem. 2006 , 11,  663.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[37]   E. E. Lees , T. L. Nguyen , A. H. A. Clayton , P. Mulvaney , The preparation of colloidally stable, water-soluble, biocompatible semiconductor nanocrystals with a small hydrodynamic diameter. ACS Nano 2009 , 3,  1121.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[38]   W. Liu , M. Howarth , A. Greytak , Y. Zheng , D. Nocera , A. Ting , M. Bawendi , Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc. 2008 , 130,  1274.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[39]   E. L. Bentzen , I. D. Tomlinson , J. Mason , P. Gresch , M. R. Warnement , D. Wright , E. Sanders-Bush , R. Blakely , S. J. Rosenthal , Surface modification to reduce nonspecific binding of quantum dots in live cell assays. Bioconjug. Chem. 2005 , 16,  1488.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1