Postfrontal nanoparticles at Cape Grim: impact on cloud nuclei concentrations
John L. GrasCentre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, 107–121 Station St., Aspendale, Vic. 3195, Australia. Email: john.gras@csiro.au
Environmental Chemistry 6(6) 515-523 https://doi.org/10.1071/EN09076
Submitted: 22 June 2009 Accepted: 28 October 2009 Published: 18 December 2009
Environmental context. Accurate prediction of climate change requires good knowledge of all the contributing processes; those processes controlling clouds and cloud properties are of particular importance. In this study the growth of bursts of nanometre-sized particles observed following cold fronts over the Southern Ocean was modelled to assess their importance as a source of cloud droplet nuclei. This showed that these post-frontal events were responsible for ~8% of the cloud nucleus population in winter but much less in summer.
Abstract. Aerosol removal and growth rates were determined for the Cape Grim marine boundary layer (MBL) using local observations. Background particle growth rates, estimated using replacement of condensable sulfur species lost to particle removal are 0.04 nm h–1 (winter) and 0.17 nm h–1 (summer) and for post-frontal nucleation-events growth rates determined using evolution of the concentration ratio of particles with diameter >3 nm and 11 nm are ~0.3–0.4 nm h–1, consistent with reported high-latitude events. A box model using region-specific loss and growth rates predicts free-troposphere/MBL N3 ratios of 1.3–2.1 and 2.4–2.5 for background and event growth rates, compared with observations in the range of 0.7–1.5. Post-frontal nucleation events were found to contribute from <1 to ~8% of the CCN population depending on season and growth rate. However, these events help maintain the MBL Aitken population, contributing up to ~30%.
Additional keywords: CCN, marine aerosol, nucleation.
[1]
F. Raes ,
R. van Dingenen ,
E. Vignati ,
J. Wilson ,
J.-P. Putard ,
J. H. Seinfeld ,
P. Adams ,
Formation and cycling of aerosols in the global troposphere.
Atmos. Environ. 2000
, 34, 4215.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[2]
C. Andronache ,
Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions.
Atmos. Chem. Phys. 2003
, 3, 131.
|
CAS |
[3]
C. Andronache ,
Precipitation removal of ultrafine aerosol particles from the atmospheric boundary layer.
J. Geophys. Res. 2004
, 109, D16S07.
| Crossref | GoogleScholarGoogle Scholar |
[4]
D. M. Chate ,
Study of scavenging of submicron-sized aerosol particles by thunderstorm rain events.
Atmos. Environ. 2005
, 39, 6608.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
J. S. Henzing ,
S. J. L. Olivié ,
P. F. J. van Velthoven ,
A parameterization of size resolved below cloud scavenging of aerosols by rain.
Atmos. Chem. Phys. 2006
, 6, 3363.
|
CAS |
[6]
M. Kulmala ,
H. Vehkamäki ,
T. Petäjä ,
M. Dal Maso ,
A. Lauri ,
V.-M. Kerminen ,
W. Birmili ,
P. H. McMurry ,
Formation and growth rates of ultrafine particles: a review of observations.
J. Aerosol Sci. 2004
, 35, 143.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
S. N. Pandis ,
L. M. Russell ,
J. H. Seinfeld ,
The relationship between DMS flux and CCN concentration in remote marine regions.
J. Geophys. Res. 1994
, 99, 16945.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
X. Lin ,
W. L. Chameides ,
C. S. Kiang ,
A. W. Stelson ,
H. Berresheim ,
A model study of the formation of cloud condensation nuclei in remote marine areas.
J. Geophys. Res. 1992
, 97, 18161.
[9]
M. Hamrud ,
H. Rodhe ,
Lagrangian time scales connected with clouds and precipitation.
J. Geophys. Res. 1986
, 91, 14377.
| Crossref | GoogleScholarGoogle Scholar |
[10]
[11]
[12]
[13]
[14]
R. Boers ,
J. B. Jensen ,
P. Krummel ,
H. Gerber ,
Microphysical and short-wave radiative structure of wintertime stratocumulus clouds over the Southern ocean.
Q. J. R. Meteorol. Soc. 1996
, 122, 1307.
| Crossref | GoogleScholarGoogle Scholar |
[15]
R. Boers ,
P. Krummel ,
Microphysical properties of boundary layer clouds over the Southern Ocean during ACE-1.
J. Geophys. Res. 1998
, 103, 16651.
| Crossref | GoogleScholarGoogle Scholar |
[16]
R. Boers ,
J. B. Jensen ,
P. Krummel ,
Microphysical and short-wave radiative structure of stratocumulus clouds over the Southern Ocean: summer results and seasonal differences.
Q. J. R. Meteorol. Soc. 1998
, 124, 151.
| Crossref | GoogleScholarGoogle Scholar |
[17]
J. L. Gras ,
CN, CCN and particle size in Southern Ocean air at Cape Grim.
Atmos. Res. 1995
, 35, 233.
| Crossref | GoogleScholarGoogle Scholar |
[18]
A. F. Wiedensohler ,
F. Brechtel ,
D. S. Covert ,
R. Wernicke ,
F. Stratmann ,
W. Birmili ,
S. Kreidenweis ,
Representative aerosol size distributions for different synoptic weather situations over the Tasman Sea.
J. Aerosol Sci. 1997
, 28, S37.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[19]
W. A. Hoppel ,
G. M. Frick ,
R. E. Larson ,
Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary layer.
Geophys. Res. Lett. 1986
, 13, 125.
| Crossref | GoogleScholarGoogle Scholar |
[20]
I. N. Tang ,
H. R. Munklewitz ,
Water activities, densities and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance.
J. Geophys. Res. 1994
, 99, 18801.
| Crossref | GoogleScholarGoogle Scholar |
[21]
O. H. Berg ,
E. Swietlicki ,
R. Krejci ,
Hygroscopic growth of aerosol particles in the marine boundary layer over the Pacific and Southern Oceans during the First Aerosol Characterization Experiment (ACE).
J. Geophys. Res. 1998
, 103, 16535.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
[23]
[24]
[25]
[26]
R. Van Dingenen ,
A. Virkkula ,
F. Raes ,
T. Bates ,
A. Wiedensohler ,
A simple non-linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer.
Tellus B 2000
, 52, 439.
| Crossref | GoogleScholarGoogle Scholar |
[27]
T. S. Bates ,
P. K. Quinn ,
D. S. Covert ,
D. J. Coffman ,
J. E. Johnson ,
A. Wiedensohler ,
Aerosol physical properties and controlling processes in the lower marine boundary layer: a comparison of submicron data from ACE-1 and ACE-2.
Tellus B 2000
, 52, 258.
| Crossref | GoogleScholarGoogle Scholar |
[28]
V.-M. Kerminen ,
M. Kulmala ,
Analytical formulae connecting the “real” and “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events.
Aerosol Sci. 2002
, 33, 609.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[29]
C. Kuang ,
P. H. McMurry ,
A. V. McCormick ,
Determination of cloud condensation nuclei production from measured new particle formation events.
Geophys. Res. Lett. 2009
, 36, L09822.
| Crossref | GoogleScholarGoogle Scholar |
[30]
C. D. O’Dowd ,
T. Hoffmann ,
Coastal new particle formation: a review of current state-of-the-art.
Environ. Chem. 2005
, 2, 245.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[31]
J. M. Cainey ,
M. Keywood ,
M. R. Grose ,
P. Krummel ,
I. E. Galbally ,
P. Johnston ,
R. W. Gillett ,
M. Meyer ,
et al. Precursors to Particles (P2P) at Cape Grim 2006: campaign overview.
Environ. Chem. 2007
, 4, 143.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[32]
B. Gantt ,
N. Meskhidze ,
D. Kamykowski ,
A new physically-based quantification of marine isoprene and primary organic aerosol emissions.
Atmos. Chem. Phys. 2009
, 9, 4915.
|
CAS |
[33]
C. D. O’Dowd ,
M. C. Facchini ,
F. Cavalli ,
D. Ceburnis ,
M. Mircea ,
S. Decesari ,
S. Fuzzi ,
Y. J. Yoon ,
J.-P. Putaud ,
Biogenically driven organic contribution to marine aerosol.
Nature 2004
, 431, 676.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[34]
A. M. Middlebrook ,
D. M. Murphy ,
D. S. Thomson ,
Observations of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE 1).
J. Geophys. Res. 1998
, 103, 16475.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
B. J. Huebert ,
S. G. Howell ,
L. Zhuang ,
J. A. Heath ,
M. R. Litchy ,
D. J. Wylie ,
J. L. Kreidler-Moss ,
S. Coppicus ,
J. E. Pfeiffer ,
Filter and impactor measurements of anions and cations during the First Aerosol Characterization Experiment (ACE 1).
J. Geophys. Res. 1998
, 103, 16493.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[36]
T. S. Bates ,
V. N. Kapustin ,
P. K. Quinn ,
D. S. Covert ,
D. J. Coffman ,
C. Mari ,
P. A. Durkee ,
W. J. De Bruyn ,
E. S. Saltzman ,
Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the first Aerosol Characterization experiment (ACE 1).
J. Geophys. Res. 1998
, 103, 16369.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
F. Raes ,
Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer.
J. Geophys. Res. 1995
, 100, 2893.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[38]
R. Van Dingenen ,
F. Raes ,
J.-P. Putard ,
A. Virkkula ,
M. Mangoni ,
Processes determining the relationship between aerosol number and non-sea-salt sulfate mass concentrations in the clean and perturbed marine boundary layer.
J. Geophys. Res. 1999
, 104, 8027.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[39]
C. S. Bretherton ,
P. Austin ,
S. T. Siems ,
Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part II: Cloudiness, drizzle, surface fluxes and entrainment.
J. Atmos. Sci. 1995
, 52, 2724.
| Crossref | GoogleScholarGoogle Scholar |
[40]
G. P. Ayers ,
H. Granek ,
R. Boers ,
Ozone in the marine boundary layer at Cape Grim: model simulation.
J. Atmos. Chem. 1997
, 27, 179.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[41]
H. Venzac ,
K. Sellegri ,
P. Villani ,
D. Picard ,
P. Laj ,
Seasonal variation of aerosol size distributions in the free troposphere and residual layer at the puy de Dôme station, France.
Atmos. Chem. Phys. 2009
, 9, 1465.
|
CAS |
[42]
C. Nishita ,
K. Osada ,
K. Matsunaga ,
Y. Iwasaka ,
Number-size distributions of free tropospheric aerosol particles at Mt Norikura, Japan: effects of precipitation and air mass transportation pathways.
J. Geophys. Res. 2007
, 112, D10213.
| Crossref | GoogleScholarGoogle Scholar |
[43]
R. J. Weber ,
P. H. McMurry ,
Fine particle size distributions at the Mauna loa observatory, Hawaii.
J. Geophys. Res. 1996
, 101, 14767.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[44]
E. K. Bigg ,
J. L. Gras ,
C. Evans ,
Origin of Aitken particles in remote regions of the southern hemisphere.
J. Atmos. Chem. 1984
, 1, 203.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[45]
E. K. Bigg ,
D. E. Turvey ,
Sources of atmospheric particles over Australia.
Atmos. Environ. 1978
, 12, 1643.
| Crossref | GoogleScholarGoogle Scholar |
[46]
[47]
J. G. Hudson ,
Y. Xie ,
S. S. Yum ,
Vertical distributions of cloud condensation nuclei spectra over the summertime Southern Ocean.
J. Geophys. Res. 1998
, 103, 16609.
| Crossref | GoogleScholarGoogle Scholar |
[48]
C. D. O’Dowd ,
K. Hämeri ,
J. Mäkelä ,
M. Väkeva ,
P. Aalto ,
G. de Leeuw ,
G. J. Kunz ,
E. Becker ,
et al. Coastal new particle formation: Environmental conditions and aerosol physicochemical characteristics during nucleation bursts.
J. Geophys. Res. 2002
, 107, 8107.
| Crossref | GoogleScholarGoogle Scholar |
[49]
L. Pirjola ,
C. D. O’Dowd ,
M. Kulmala ,
A model prediction of the yield of cloud condensation nuclei from coastal nucleation events.
J. Geophys. Res. 2002
, 107, 8098.
| Crossref | GoogleScholarGoogle Scholar |
[50]
A. Laaksonen ,
A. Hamed ,
J. Joutsensaari ,
L. Hiltunen ,
F. Cavalli ,
W. Junkermann ,
A. Asmi ,
S. Fuzzi ,
M. C. Facchini ,
Cloud condensation nucleus production from nucleation events at a highly polluted region.
Geophys. Res. Lett. 2005
, 32, L06812.
| Crossref | GoogleScholarGoogle Scholar |
[51]
H. Lihavainen ,
V.-M. Kerminen ,
M. Komppula ,
J. Hatakka ,
V. Aaltonen ,
M. Kulmala ,
Y. Viisanen ,
Production of ‘potential’ cloud condensation nuclei associated with atmospheric new-particle formation in northern Finland.
J. Geophys. Res. 2003
, 108, 4782.
| Crossref | GoogleScholarGoogle Scholar |
[52]
J. R. Pierce ,
P. J. Adams ,
Efficiency of cloud condensation nuclei formation from ultrafine particles.
Atmos. Chem. Phys. 2007
, 7, 1367.
|
CAS |
[53]
J. L. Gras ,
S. I. Jimi ,
S. T. Siems ,
P. B. Krummel ,
Postfrontal nanoparticles at Cape Grim: observations.
Environ. Chem. 2009
, 6, 508.
| Crossref | GoogleScholarGoogle Scholar |