Postfrontal nanoparticles at Cape Grim: observations
John L. Gras A E , Salah I. Jimi B C , Steven T. Siems C D and Paul B. Krummel AA Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, 107–121 Station St., Aspendale, Vic. 3195, Australia.
B School of Geography and Environmental Science, Monash University, Clayton, Vic. 3800, Australia.
C Climate Theme Monash Sustainability Institute, Monash University, Clayton, Vic. 3800, Australia.
D School of Mathematical Sciences, Monash University, Clayton, Vic. 3800, Australia.
E Corresponding author. Email: john.gras@csiro.au
Environmental Chemistry 6(6) 508-514 https://doi.org/10.1071/EN09075
Submitted: 22 June 2009 Accepted: 28 October 2009 Published: 18 December 2009
Environmental context. Clouds and the factors controlling cloud properties are essential components in understanding and accurately predicting global climate change. This work examines nanometre-sized atmospheric particles, particularly bursts of enhanced particle concentrations following cold fronts over the Southern Ocean. The properties of these events have been established to enable modelling of their significance as a source of cloud-droplet-forming nuclei.
Abstract. Nanoparticles (diameter <10 nm) were studied in clean maritime air at Cape Grim over a 2-year period. Concentrations were determined using a condensation nucleus counter (CNC) and an ultra-CNC (UCNC), requiring careful treatment of drifts in counter efficiency. This is the first extended examination of nanoparticles following cold fronts and shows that nanoparticle enhancements were present following 94% of 121 cold fronts studied. Typical enhancements were ~100 cm–3 with maxima ~300–500 cm–3, occur 9–11 h after the front and contain multiple peaks with peak-to-peak separation of 8–11 h. Most enhancements were associated with drier conditions, indicative of increased entrainment of free-tropospheric air after the front. The quasi-periodicity of the enhancements may be related to mesoscale structures in cloud fields following fronts but this requires testing. This quantification of event properties allows evaluation of the significance of these events for the cloud nucleating particle (CCN) population.
Additional keywords: CCN, marine aerosol, nucleation.
Acknowledgements
We acknowledge the effort of the staff at the Cape Grim Baseline Air Pollution Station in running and maintaining all instruments in the Particle Program, and also acknowledge funding for this work from the Australian Bureau of Meteorology and CSIRO.
[1]
A. W. Hogan ,
S. Barnard ,
Seasonal and frontal variation in Antarctic aerosol concentrations.
J. Appl. Meteorol. 1978
, 17, 1458.
| Crossref | GoogleScholarGoogle Scholar |
[2]
T. Ito ,
Study of background aerosols in the Antarctic troposphere.
J. Atmos. Chem. 1985
, 3, 69.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[3]
D. S. Covert ,
V. N. Kapustin ,
P. K. Quinn ,
T. S. Bates ,
New particle formation in the marine boundary layer.
J. Geophys. Res. 1992
, 97, 20,581.
[4]
D. S. Covert ,
V. N. Kapustin ,
T. S. Bates ,
P. K. Quinn ,
Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport.
J. Geophys. Res. 1996
, 101, 6919.
| Crossref | GoogleScholarGoogle Scholar |
[5]
T. S. Bates ,
V. N. Kapustin ,
P. K. Quinn ,
D. S. Covert ,
D. J. Coffman ,
C. Mari ,
P. A. Durkee ,
W. J. De Bruyn ,
E. S. Saltzman ,
Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterisation Experiment (ACE 1).
J. Geophys. Res. 1998
, 103, 16,369.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[6]
E. K. Bigg ,
J. L. Gras ,
C. Evans ,
Origin of Aitken particles in remote regions of the southern hemisphere.
J. Atmos. Chem. 1984
, 1, 203.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
A. D. Clarke ,
Atmospheric nuclei in the pacific mid troposphere: their nature, concentration, and evolution.
J. Geophys. Res. 1993
, 98, 20,633.
| Crossref | GoogleScholarGoogle Scholar |
[8]
F. Raes ,
Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer.
J. Geophys. Res. 1995
, 100, 2893.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
F. Raes ,
R. Van Dingenen ,
E. Vignati ,
J. Wilson ,
J.-P. Putard ,
J. H. Seinfeld ,
P. Adams ,
Formation and cycling of aerosols in the global troposphere.
Atmos. Environ. 2000
, 34, 4215.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
R. Van Dingenen ,
F. Raes ,
J.-P. Putard ,
A. Virkkula ,
M. Mangoni ,
Processes determining the relationship between aerosol number and non-sea-salt sulfate mass concentrations in the clean and perturbed marine boundary layer.
J. Geophys. Res. 1999
, 104, 8027.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[11]
R. Van Dingenen ,
A. Virkkula ,
F. Raes ,
T. Bates ,
A. Wiedensohler ,
A simple non-linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer.
Tellus B 2000
, 52, 439.
| Crossref |
[12]
K. P. Capaldo ,
P. Kasibhatla ,
S. N. Pandis ,
Is aerosol production within the remote marine boundary layer sufficient to maintain observed concentrations?
J. Geophys. Res. 1999
, 104, 3483.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
[14]
J. L. Gras ,
Condensation nucleus size distribution at Mawson Antarctica: seasonal cycle.
Atmos. Environ. 1993
, 27, 1417.
[15]
C. D. O’Dowd ,
M. Geever ,
M. K. Hill ,
M. H. Smith ,
S. G. Jennings ,
New particle formation: nucleation rates and spatial scales in the clean marine coastal environment.
Geophys. Res. Lett. 1998
, 25, 1661.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
C. D. O’Dowd ,
K. Hameri ,
J. Makela ,
M. Vakeva ,
P. Aalto ,
G. de Leeuw ,
G. J. Kunz ,
E. Becker ,
et al. Coastal new particle formation: environmental conditions and aerosol physicochemical characteristics during nucleation bursts.
J. Geophys. Res. 2002
, 107, 8107.
| Crossref |
[17]
C. D. O’Dowd ,
K. Hameri ,
J. M. Makela ,
L. Pirjola ,
M. Kulmala ,
S. G. Jennings ,
H. Berresheim ,
H. C. Hansson ,
et al. A dedicated study of new particle formation and fate in the coastal environment (PARFORCE): overview of objectives and achievements.
J. Geophys. Res. 2002
, 107, 8108.
| Crossref | GoogleScholarGoogle Scholar |
[18]
J. L. Gras ,
Postfrontal nanoparticles at Cape Grim: impact on cloud nuclei concentrations.
Environ. Chem. 2009
, 6, 515.
| Crossref | GoogleScholarGoogle Scholar |
[19]
A. Wiedensohler ,
D. Orsini ,
D. S. Covert ,
D. Coffmann ,
W. Cantrell ,
M. Havlicek ,
F. J. Brechtel ,
L. M. Russell ,
et al. Intercomparison study of size-dependent counting efficiency of 26 condensation particle counters.
Aerosol Sci. Technol. 1997
, 27, 224.
| Crossref | GoogleScholarGoogle Scholar |
[20]
A. Wiedensohler ,
F. Brechtel ,
D. S. Covert ,
R. Wernicke ,
F. Stratmann ,
W. Birmili ,
S. Kreidenweis ,
Representative aerosol size distributions for different synoptic weather situations over the Tasman Sea.
J. Aerosol Sci. 1997
, 28, S37.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
S. I. Jimi ,
S. T. Siems ,
J. L. McGreggor ,
J. L. Gras ,
J. J. Katzfey ,
An investigation into the origin of aerosol nucleation events observed in the Southern Ocean boundary layer.
Aust. Meteorol. Mag. 2008
, 57, 85.
[22]
G. P. Ayers ,
J. L. Gras ,
Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air.
Nature 1991
, 353, 834.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
G. P. Ayers ,
R. W. Gillett ,
DMS and its oxidation products in the remote marine atmosphere: implications for climate and atmospheric chemistry.
J. Sea Res. 2000
, 43, 275.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
C. D. O’Dowd ,
K. Hämeri ,
J. Mäkelä ,
M. Väkeva ,
P. Aalto ,
G. de Leeuw ,
G. J. Kunz ,
E. Becker ,
et al. Coastal new particle formation: environmental conditions and aerosol physicochemical characteristics during nucleation bursts.
J. Geophys. Res. 2002
, 107, 8107.
| Crossref | GoogleScholarGoogle Scholar |
[25]
C. D. O’Dowd ,
T. Hoffmann ,
Coastal new particle formation: a review of current state-of-the-art.
Environ. Chem. 2005
, 2, 245.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
C. D. O’Dowd ,
Y. J. Yoon ,
W. Junkermann ,
P. Aalto ,
M. Kulmala ,
H. Lihavainen ,
Y. Viisanen ,
Airborne measurements of nucleation mode particles II: boreal forest nucleation events.
Atmos. Chem. Phys. 2009
, 9, 937.
|
CAS |
[27]
L. F. Bosart ,
F. Sanders ,
Mesoscale structure in the Megalopolitan Snowstorm of 11–12 February 1983. Part III: A large-amplitude gravity wave.
J. Atmos. Sci. 1986
, 43, 924.
| Crossref | GoogleScholarGoogle Scholar |
[28]
S. D. Eckermann ,
R. A. Vincent ,
VHF radar observations of gravity wave production by cold fronts over southern Australia.
J. Atmos. Sci. 1993
, 50, 785.
| Crossref | GoogleScholarGoogle Scholar |
[29]
E. K. Bigg ,
A mechanism for the formation of new particles in the atmosphere.
Atmos. Res. 1997
, 43, 129.
| Crossref | GoogleScholarGoogle Scholar |
CAS |