Development of DNPH/HPLC method for the measurement of carbonyl compounds in the aqueous phase: applications to laboratory simulation and field measurement
Hongli Wang A , Xuan Zhang A and Zhongming Chen A BA State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Haidian District, Beijing 100871, P. R. China.
B Corresponding author. Email: zmchen@pku.edu.cn
Environmental Chemistry 6(5) 389-397 https://doi.org/10.1071/EN09057
Submitted: 9 May 2009 Accepted: 17 September 2009 Published: 22 October 2009
Environmental context. Carbonyl compounds, a class of oxygenated organic matter, are crucial participants in atmospheric processes. Recently, studies have shown that the aqueous-phase processes of carbonyls have an important contribution to the formation of secondary organic aerosol (SOA), which is considered to have a significant impact on global climate change and human health. We developed the classical DNPH/HPLC method to characterise the aqueous-phase carbonyls, especially methacrolein, methyl vinyl ketone, glyoxal, and methylglyoxal, which are important precursors of SOA, in order to better understand the pathways of SOA formation in the atmosphere.
Abstract. The DNPH/HPLC method for characterising monocarbonyls and dicarbonyls in the aqueous phase has been developed. A series of experiments have been carried out using eight atmospheric ubiquitous carbonyl compounds as model dissolved compounds in both acetonitrile and water solution to obtain the optimal derivatisation and analysis qualifications. Compared with the analysis of carbonyls dissolved in acetonitrile, the influence of acidity on the derivatisation efficiency should be carefully considered in determining carbonyls in water and the optimal acidity is pH 2.0. We find that methyl vinyl ketone (MVK) transforms to crotonaldehyde during the derivatisation reaction. This transformation can be controlled to a minor degree by increasing the mixing ratio of DNPH to MVK up to 100 : 1. This improved method has been satisfactorily applied to laboratory simulations and field measurements for better understanding the carbonyl chemistry in the atmosphere.
Additional keywords: aqueous-phase, atmosphere, carbonyl, DNPH/HPLC method.
Acknowledgements
The authors gratefully thank the National Natural Science Foundation of China (grants 40875072 and 20677002) for their financial support. The authors thank Mingqun Huo, from the College of Environmental Sciences and Engineering of Peking University, for his precipitation data support.
[1]
P. Carlier ,
H. Hannachi ,
G. Mouvier ,
The chemistry of carbonyl compounds in the atmosphere: a review.
Atmos. Environ. 1986
, 20, 2079.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[2]
R. Atkinson ,
Gas-phase tropospheric chemistry of organic compounds: a review.
Atmos. Environ. 1990
, 24, 1.
[3]
K. Müller ,
S. Haferkorn ,
W. Grabmer ,
A. Wisthaler ,
A. Hansel ,
J. Kreuzwieser ,
C. Cojocariu ,
H. Rennenberg ,
H. Herrmann ,
Biogenic carbonyl compounds within and above a coniferous forest in Germany.
Atmos. Environ. 2006
, 40, 81.
| Crossref | GoogleScholarGoogle Scholar |
[4]
W. P. L. Carter ,
A detailed mechanism for the gas-phase atmospheric reactions of organic compounds.
Atmos. Environ. 1990
, 24, 481.
[5]
A. P. Altschuller ,
Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours.
Atmos. Environ. 1993
, 27, 21.
[6]
L. G. Anderson ,
J. A. Lanning ,
R. Barrell ,
J. Miyashima ,
R. H. Jones ,
P. Wolfe ,
Sources and sinks of formaldehyde and acetaldehyde: ananalysis of Denver’s ambient concentration data.
Atmos. Environ. 1996
, 30, 2113.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
R. Atkinson ,
J. Arey ,
Atmospheric degradation of volatile organic compounds.
Chem. Rev. 2003
, 103, 4605.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[8]
P. O. Wennberg ,
F. Hanisco ,
L. Jaegle ,
D. J. Jacob ,
Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere.
Science 1998
, 279, 49.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[9]
H. B. Singh ,
D. Ohara ,
D. Herlth ,
W. Sachse ,
D. R. Blake ,
J. D. Bradshaw ,
M. Kanakidou ,
P. J. Crutzen ,
Acetone in the atmosphere – distribution, sources and sinks.
J. Geophys. Res. 1994
, 99, 1805.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
[11]
D. K. Henze ,
J. H. Seinfeld ,
Global secondary organic aerosol from isoprene oxidation.
Geophys. Res. Lett. 2006
, 33, L09812.
| Crossref | GoogleScholarGoogle Scholar |
[12]
B. Ervens ,
A. G. Carlton ,
B. J. Turpin ,
K. E. Altieri ,
S. M. Kreidenweis ,
G. Feingold ,
Secondary organic aerosol yields from cloud-processing of isoprene oxidation products.
Geophys. Res. Lett. 2008
, 35, L02816.
| Crossref | GoogleScholarGoogle Scholar |
[13]
L. T. Iraci ,
B. M. Baker ,
G. S. Tyndall ,
J. J. Orlando ,
Measurements of the Henry’s Law coefficients of 2-methyl-3-buten-2-ol, methacrolein, and methyl vinyl ketone.
J. Atmos. Chem. 1999
, 33, 321.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[14]
R. Seyfioglu ,
M. Odabasi ,
Determination of Henry’s law constant of formaldehyde as a function of temperature: application to air-water exchange in Tahtali Lake in Izmir, Turkey.
Environ. Monit. Assess. 2007
, 128, 343.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
H. S. S. Ip ,
X. H. H. Huang ,
J. Z. Yu ,
Effective Henry’s law constants of glyoxal, glyoxylic acid, and glycolic acid.
Geophys. Res. Lett. 2009
, 36, L01802.
| Crossref | GoogleScholarGoogle Scholar |
[16]
A. G. Carlton ,
B. J. Turpin ,
K. E. Altieri ,
S. Seitzinger ,
A. Reff ,
H. J. Lim ,
B. Ervens ,
Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments.
Atmos. Environ. 2007
, 41, 7588.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[17]
K. E. Altieri ,
S. P. Seitzinger ,
A. G. Carlton ,
B. J. Turpin ,
G. C. Klein ,
A. G. Marshall ,
Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry.
Atmos. Environ. 2008
, 42, 1476.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
R. Volkamer ,
P. J. Ziemann ,
M. J. Molina ,
Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase.
Atmos. Chem. Phys. 2008
, 8, 14841.
[19]
H. J. Lim ,
A. G. Carlton ,
B. J. Turpin ,
Isoprene forms secondary organic aerosol through cloud processing: model simulations.
Environ. Sci. Technol. 2005
, 39, 4441.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
K. E. Altieri ,
A. G. Carlton ,
H. J. Lim ,
B. J. Turpin ,
S. P. Seitzinger ,
Evidence for oligomer formation in clouds: reactions of isoprene oxidation products.
Environ. Sci. Technol. 2006
, 40, 4956.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[21]
T. M. Fu ,
D. J. Jacob ,
C. L. Heald ,
Aqueous-phase reactive uptake of dicarbonyls as a source of organic aerosol over eastern North America.
Atmos. Environ. 2009
, 43, 1814.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
W. Klippel ,
P. Warneck ,
Formaldehyde in rainwater and on the atmospheric aerosol.
Geophys. Res. Lett. 1978
, 5, 177.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
O. C. Zafiriou ,
J. Alford ,
M. Herrena ,
E. T. Peltzer ,
R. B. Gagosian ,
Formaldehyde in remote marine air and rain: flux measurements and estimates.
Geophys. Res. Lett. 1980
, 7, 341.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
E. Sanhueza ,
Z. Ferrer ,
J. Romero ,
M. Santana ,
HCHO and HCOOH in tropical rains.
Ambio 1991
, 20, 115.
[25]
P. Khare ,
G. S. Satsangi ,
N. Kumar ,
K. M. Kumari ,
S. S. Srivastava ,
HCHO, HCOOH and CH3COOH in air and rain water at a rural tropical site in north central India.
Atmos. Environ. 1997
, 31, 3867.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
C. Economou ,
N. Mihalopoulos ,
Formaldehyde in the rainwater in the eastern Mediterranean: Occurrence, deposition and contribution to organic carbon budget.
Atmos. Environ. 2002
, 36, 1337.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
R. M. Peña ,
S. Garcĩa ,
C. Herrero ,
M. Losada ,
A. Vázquezb ,
T. Lucas ,
Organic acids and aldehydes in rainwater in a northwest region of Spain.
Atmos. Environ. 2002
, 36, 5277.
| Crossref | GoogleScholarGoogle Scholar |
[28]
Z. Polkowska ,
K. Skarzynska ,
T. Gorecki ,
J. Namiesnik ,
Formaldehyde in various forms of atmospheric precipitation and deposition from highly urbanized regions.
J. Atmos. Chem. 2006
, 53, 211.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[29]
D. Grosjean ,
B. Wright ,
Carbonyls in urban fog, ice fog, cloudwater and rainwater.
Atmos. Environ. 1983
, 17, 2093.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[30]
M. Igawa ,
J. W. Munger ,
M. R. Hoffmann ,
Analysis of aldehydes in cloud and fog water samples by HPLC with a post column reaction detector.
Environ. Sci. Technol. 1989
, 23, 556.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[31]
J. W. Munger ,
D. J. Jacob ,
B. C. Daube ,
L. W. Horowitz ,
W. C. Keene ,
B. G. Heikes ,
Formaldehyde, glyoxal, and methylglyoxal in air and cloudwater at a rural mountain site in central Virginia.
J. Geophys. Res. 1995
, 100, 9325.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[32]
D. van Pinxteren ,
A. Plewka ,
D. Hofmann ,
K. Muller ,
H. Kramberger ,
B. Svrcina ,
K. Bachmann ,
W. Jaeschke ,
S. Mertes ,
J. L. Collett ,
H. Herrmann ,
Schmucke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): organic compounds.
Atmos. Environ. 2005
, 39, 4305.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
K. Skarzynska ,
Z. Polkowska ,
J. Namiesnik ,
Sample handling and determination of physico-chemical parameters in rime, hoarfrost, dew, fog and cloud water samples – a review.
Pol. J. Environ. Stud. 2006
, 15, 185.
|
CAS |
[34]
K. Matsumoto ,
S. Kawai ,
M. Igawa ,
Dominant factors controlling concentrations of aldehydes in rain, fog, dew water, and in the gas phase.
Atmos. Environ. 2005
, 39, 7321.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
S. Perrier ,
S. Houdier ,
F. Domine ,
A. Cabanes ,
L. Legagneux ,
A. L. Sumner ,
P. B. Shepson ,
Formaldehyde in Arctic snow. Incorporation into ice particles and evolution in the snowpack.
Atmos. Environ. 2002
, 36, 2695.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[36]
Z. Polkowska ,
K. Skarzynska ,
T. Gorecki ,
J. Namiesnik ,
Formaldehyde in various forms of atmospheric precipitation and deposition from highly urbanized regions.
J. Atmos. Chem. 2006
, 53, 211.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
S. Steinberg ,
I. R. Kaplan ,
Determination of low molecular weight aldehydes in rain, fog and mist by reverse phase chromatography of the 2,4-dinitrophenyldihydrazone derivative.
Int. J. Environ. Anal. Chem. 1984
, 18, 253.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[38]
K. Kawamura ,
S. Steinberg ,
I. R. Kaplan ,
Concentrations of mono- and di-carboxylic acids and aldehydes in southern California wet precipitations: comparison of urban and non-urban samples and compositional changes during scavenging.
Atmos. Environ. 1996
, 30, 1035.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[39]
K. Kawamura ,
S. Steinberg ,
L. Ng ,
I. R. Kaplan ,
Wet deposition of low molecular weight mono- and di-carboxylic acids, aldehydes and inorganic species in Los Angeles.
Atmos. Environ. 2001
, 35, 3917.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[40]
A. Asthana ,
D. Bose ,
S. Kulshrestha ,
S. P. Pathak ,
S. K. Sanghi ,
W. Th. Kok ,
Determination of aldehydes in water samples by capillary electrophoresis after derivatisation with hydrazine benzene sulfonic acid.
Chromatographia 1998
, 48, 807.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[41]
A. Mainka ,
K. Bächmann ,
UV detection of derivatized carbonyl compounds in rain samples in capillary electrophoresis using sample stacking and a Z-shaped flow cell.
J. Chromatogr. A 1997
, 767, 241.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
R. J. Kieber ,
M. F. Rhines ,
J. D. Willey ,
G. B. Avery ,
Rainwater formaldehyde: Concentration, deposition and photochemical formation.
Atmos. Environ. 1999
, 33, 3659.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[43]
R. Seyfioglu ,
M. Odabasi ,
Investigation of air–water exchange of formaldehyde using the water surface sampler: Flux enhancement due to chemical reaction.
Atmos. Environ. 2006
, 40, 3503.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[44]
L. M. Cárdenas ,
D. J. Brassington ,
B. J. Allan ,
H. Coe ,
B. Alicke ,
U. Platt ,
K. M. Wilson ,
J. M. C. Plane ,
S. A. Penkett ,
Intercomparison of formaldehyde measurements in clean and polluted atmosphere.
J. Atmos. Chem. 2000
, 37, 53.
| Crossref | GoogleScholarGoogle Scholar |
[45]
R. J. Kieber ,
K. Mopper ,
Determination of picomolar concentrations of carbonyl compounds in natural waters, including seawater, by liquid chromatography.
Environ. Sci. Technol. 1990
, 24, 1477.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[46]
I. El Haddad ,
Y. Liu ,
L. Nieto-Gligorovski ,
V. Michaud ,
B. Temime-Roussel ,
E. Quivet ,
N. Marchand ,
K. Sellegri ,
A. Monod ,
In-cloud processes of methacrolein under simulated conditions – Part 2: formation of secondary organic aerosol.
Atmos. Chem. Phys. Discuss. 2009
, 9, 6425.
[47]
R. Schulte-Ladbeck ,
R. Lindahl ,
J. O. Levin ,
U. Karst ,
Characterization of chemical interferences in the determination of unsaturated aldehydes using aromatic hydrazine reagents and liquid chromatography.
J. Environ. Monit. 2001
, 3, 306.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[48]
S. M. van Leeuwen ,
L. Hendriksen ,
U. Karst ,
Determination of aldehydes and ketones using derivatisation with 2,4-dinitrophenylhydrazine and liquid chromatography-atmospheric pressure photoionization-mass spectrometry.
J. Chromatogr. A 2004
, 1058, 107.
|
CAS |
PubMed |
[49]
C. K. Huynh ,
T. Vu-Duc ,
Intermethod comparisons of active sampling procedures and analysis of aldehydes at environmental levels.
Anal. Bioanal. Chem. 2002
, 372, 654.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[50]
[51]
Z. M. Chen ,
H. L. Wang ,
L. H. Zhu ,
C. X. Wang ,
C. Y. Jie ,
W. Hua ,
Aqueous-phase ozonolysis of methacrolein and methylvinyl ketone: a potentially important source of atmospheric aqueous oxidants.
Atmos. Chem. Phys. 2008
, 8, 2255.
|
CAS |
[52]
P. J. Crutzen ,
J. Williams ,
U. Pöschl ,
P. Hoor ,
H. Fischer ,
C. Warneke ,
R. Holzinger ,
A. Hansel ,
W. Lindinger ,
B. Scheeren ,
J. Lelieveld ,
High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam.
Atmos. Environ. 2000
, 34, 1161.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[53]
S. N. Matsunaga ,
A. B. Guenther ,
Y. Izawa ,
C. Wiedinmyer ,
J. P. Greenberg ,
K. Kawamura ,
Importance of wet precipitation as a removal and transport process for atmospheric water soluble carbonyls.
Atmos. Environ. 2007
, 41, 790.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[54]
J. D. Blando ,
B. J. Turpin ,
Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility.
Atmos. Environ. 2000
, 34, 1623.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[55]
A. G. Carlton ,
B. J. Turpin ,
H. J. Lim ,
K. E. Altieri ,
S. Seitzinger ,
Link between isoprene and secondary organic aerosol (SOA): pyruvic acid oxidation yields low volatility organic acids in clouds.
Geophys. Res. Lett. 2006
, 33, L06822.
| Crossref | GoogleScholarGoogle Scholar |
[56]
T. M. Fu ,
D. J. Jacob ,
F. Wittroch ,
J. P. Burrows ,
M. Vrekoussis ,
D. K. Henze ,
Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols.
J. Geophys. Res. 2008
, 113, D15303.
| Crossref | GoogleScholarGoogle Scholar |
[57]
D. Pierotti ,
S. C. Wofsy ,
D. Jacob ,
R. A. Rasmussen ,
Isoprene and its oxidation products: methacrolein and methyl vinyl ketone.
J. Geophys. Res. 1990
, 95, 1871.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[58]
S. A. Montzka ,
M. Trainer ,
W. M. Angevine ,
F. C. Fehsenfeld ,
Measurements of 3-methylfuran, methyl vinyl ketone, and methacrolein at a rural forested site in the south eastern United States.
J. Geophys. Res. 1995
, 100, 11393.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[59]
T. A. Biesenthal ,
Q. Wu ,
P. B. Shepson ,
H. A. Wiebe ,
K. G. Anlauf ,
G. I. Mackay ,
A study of relationships between isoprene, its oxidation products, and ozone, in the lower Fraser Valley, BC.
Atmos. Environ. 1997
, 31, 2049.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[60]
C. Warneke ,
R. Holzinger ,
A. Hansel ,
A. Jordan ,
W. Lindinger ,
U. Pöschl ,
J. Williams ,
P. Hoor ,
H. Fischer ,
P. J. Crutzen ,
H. A. Scheeren ,
J. Lelieveld ,
Isoprene and its oxidation products methyl vinyl ketone, methacrolein, and isoprene related peroxides measured online over the tropical rain forest of Surinamin March 1998.
J. Atmos. Chem. 2001
, 38, 167.
| Crossref | GoogleScholarGoogle Scholar |
CAS |