Critical review perspective: elemental speciation analysis methods in environmental chemistry – moving towards methodological integration
Jörg Feldmann A F , Pascal Salaün B and Enzo Lombi C D EA University of Aberdeen, College of Physcial Sciences, Trace Element Speciation Laboratory Aberdeen (TESLA), AB24 3UE, Scotland, UK.
B University of Liverpool, Department of Earth and Ocean Sciences, Liverpool, L69 3GP, UK.
C University of Copenhagen, Faculty of Life Science, Department of Agriculture and Ecology, 1871 Frederiksberg C, Denmark.
D Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
E CRC CARE, PO Box 486, Salisbury, SA 5106, Australia.
F Corresponding author. Email: j.feldmann@abdn.ac.uk
Jörg Feldmann received his Ph.D. in Environmental Analytical Chemistry at University of Essen (Germany). He is the recipient of the Prize of the University of Essen and the Feodor Lynen Award (Alexander von Humboldt Foundation). After two years at the University of British Columbia (Canada), he became lecturer in 1997 at the University of Aberdeen (Scotland), where he progressed to a Chair in 2004. He is a member of the Environmental Chemistry Advisory Board and has published more than 100 scientific papers mainly on element speciation analysis in environmental and biological systems. The main focus of his research is on the use of hyphenated techniques for elemental and molecular mass spectrometry. |
Pascal Salaün is an analytical and environmental chemist interested in the physico-chemical processes influencing the biogeochemical cycling of trace elements. He is specialised in the development of electrochemical sensors for the detection and speciation of metals and metalloids in natural systems. Currently, his research focuses on the use of solid microelectrodes, their application for on-site/in-situ monitoring and complexation studies together with the development of metallic nanostructures for electroanalytical purposes. He obtained a 5 years research fellowship in 2007 focusing on arsenic speciation in fresh/marine waters and in biological systems. |
Enzo Lombi received a Ph.D. in agricultural chemistry from the Catholic University of Piacenza, Italy. He held positions at the University of Agricultural Science in Vienna, at Rothamsted Research (UK), at CSIRO Land and Water in Adelaide and at the University of Copenhagen. At present he is Associate Professor at the University of South Australia and is Leader of the Prevention Technology Program of the Cooperative Research Centre for Contamination Research and Remediation of the Environment. His major research focus is on the biogeochemistry of trace elements with a special interest on synchrotron-based techniques for the investigation of biological and soil processes. |
Environmental Chemistry 6(4) 275-289 https://doi.org/10.1071/EN09018
Submitted: 9 February 2009 Accepted: 25 May 2009 Published: 25 August 2009
Environmental context. Elemental speciation defines mobility, accumulation behaviour and toxicity of elements in the environment. Environmental processes are then modelled using species information. Hence, it is important for environmental chemists to rely on unequivocal, precise and accurate analytical data for the identification and quantification of elemental species.
Abstract. We review the application of speciation analysis used in environmental chemistry studies to gain information about the molecular diversity of elements in various environmental compartments. The review focuses on three major analytical methodologies: electrochemical, X-ray absorption spectroscopy, and methods that couple chromatography with mass spectrometric detection. In particular, the review aims to highlight the advantages and disadvantages of the three methods, and to demonstrate that both the chemistry of the element and the nature of the environmental compartment determine the choice of the preferred analytical technique. We demonstrate that these two factors can lead to technique-dependent shortcomings that contribute to the current gaps in knowledge of elemental speciation in the environment. In order to fill those gaps, multi-method approaches are urgently needed. Finally, we present a selection of recent studies that exhibit the potential to use complementary techniques to overcome method-dependent limitations in order to reduce ambiguities and to gain more confidence in the assignment of the molecular structure of elements in environmental samples.
[1]
J. J. Sloth ,
E. H. Larsen ,
K. Julshamn ,
Determination of organoarsenic species in marine samples using gradient elution cation exchange HPLC-ICP-MS.
J. Anal. At. Spectrom. 2003
, 18, 452.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[2]
S. García Salgado ,
M. A. Q. Nieto ,
M. M. B. Simon ,
Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry.
J. Chromatogr. A 2006
, 1129, 54.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[3]
A. Chatterjee ,
H. Tao ,
Y. Shibata ,
M. Morita ,
Determination of selenium compounds in urine by high-performance liquid chromatography-inductively coupled plasma mass spectrometry.
J. Chromatogr. A 2003
, 997, 249.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[4]
P. Fodor ,
Selenium speciation research in Hungary.
Metal Ions in Biology and Medicine 2004
, 8, 43.
|
CAS |
[5]
B. Planer-Friedrich ,
C. Lehr ,
J. Matschullat ,
B. J. Merkel ,
D. K. Nordstrom ,
M. W. Sandstrom ,
Speciation of volatile arsenic at geothermal features in Yellowstone National Park.
Geochim. Cosmochim. Acta 2006
, 70, 2480.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[6]
H. R. Hansen ,
R. Pickford ,
J. Thomas-Oates ,
M. Jaspars ,
J. Feldmann ,
2-dimethylarsinothioyl acetic acid identified in a biological sample: The first occurrence of a mammalian arsinothioyl metabolite.
Angew. Chem. Int. Ed. 2004
, 43, 337.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
M. S. Taleshi ,
K. B. Jensen ,
G. Raber ,
J. S. Edmonds ,
H. Gunnlaugsdottir ,
K. A. Francesconi ,
Arsenic-containing hydrocarbons: natural compounds in oil from the fish capelin, Mallotus villosus.
Chem. Commun. 2008
, 39, 4706.
| Crossref | GoogleScholarGoogle Scholar |
[8]
D. Wallschläger ,
C. J. Stadey ,
Determination of (oxy)thioarsenates in sulfidic waters.
Anal. Chem. 2007
, 79, 3873.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[9]
E. Björn ,
T. Larsson ,
L. Lambertsson ,
U. Skyllberg ,
W. Frech ,
Recent advances in mercury speciation analysis with focus on spectrometric methods and enriched stable isotope applications.
Ambio 2007
, 36, 443.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[10]
J. R. Encinar ,
M. I. M. Villar ,
V. G. Santamaria ,
J. I. G. Alonso ,
A. Sanz-Medel ,
Simultaneous determination of mono-, di-, and tributyltin in sediments by isotope dilution analysis using gas chromatography-ICPMS.
Anal. Chem. 2001
, 73, 3174.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
C. S. Eckley ,
C. J. Watras ,
H. Hintelmann ,
K. Morrison ,
A. D. Kent ,
O. Regnell ,
Mercury methylation in the hypolimnetic waters of lakes with and without connection to wetlands in northern Wisconsin.
Can. J. Fish. Aquat. Sci. 2005
, 62, 400.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[12]
S. Foster ,
W. Maher ,
F. Krikowa ,
Changes in proportions of arsenic species within an Ecklonia radiata food chain.
Environ. Chem. 2008
, 5, 176.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
G. Centineo ,
E. B. Gonzalez ,
A. Sanz-Medel ,
Multielemental speciation analysis of organometallic compounds of mercury, lead and tin in natural water samples by headspace-solid phase microextraction followed by gas chromatography-mass spectrometry.
J. Chromatogr. A 2004
, 1034, 191.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
R. Pickford ,
M. Miguens-Rodriguez ,
S. Afzaal ,
P. Speir ,
J. E. Thomas-Oates ,
Application of the high mass accuracy capabilities of FT-ICR-MS and Q-ToF-MS to the characterisation of arsenic compounds in complex biological matrices.
J. Anal. At. Spectrom. 2002
, 17, 173.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
V. Nischwitz ,
S. A. Pergantis ,
Mapping of arsenic species and identification of a novel arsenosugar in giant clams Tridacna maxima and Tridacna derasa using advanced mass spectrometric techniques.
Environ. Chem. 2007
, 4, 187.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
J. Feldmann ,
What can the different current-detection methods offer for element speciation?
TrAC – Trend. Anal. Chem. 2005
, 24, 228.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[17]
M. Kahn ,
R. Raml ,
E. Schmeisser ,
B. Vallant ,
K. A. Francesconi ,
W. Goessler ,
Two novel thio-arsenosugars in scallops identified with HPLC-ICPMS and HPLC-ESMS.
Environ. Chem. 2005
, 2, 171.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
K. Bluemlein ,
A. Raab ,
J. Feldmann ,
Stability of arsenic peptides in plant extracts: off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation.
Anal. Bioanal. Chem. 2009
, 393, 357.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
K. Bluemlein ,
A. Raab ,
A. A. Meharg ,
J. M. Charnock ,
J. Feldmann ,
Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of Thunbergia alata.
Anal. Bioanal. Chem. 2008
, 390, 1739.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
E. M. Krupp ,
B. F. Milne ,
A. Mestrot ,
A. A. Meharg ,
J. Feldmann ,
Investigation into mercury bound to biothiols: structural identification using ESI-ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS.
Anal. Bioanal. Chem. 2008
, 390, 1753.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[21]
A. Raab ,
A. A. Meharg ,
M. Jaspars ,
D. R. Genney ,
J. Feldmann ,
Arsenic-glutathione complexes – their stability in solution and during separation by different HPLC modes.
J. Anal. At. Spectrom. 2004
, 19, 183.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
J. Ruiz Encinar ,
L. Ouerdane ,
W. Buchmann ,
J. Tortajada ,
R. Lobinski ,
J. Szpunar ,
Identification of water-soluble selenium-containing proteins in selenized yeast by size-exclusion-reversed-phase HPLC/ICPMS followed by MALDI-TOF and electrospray Q-TOF mass spectrometry.
Anal. Chem. 2003
, 75, 3765.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[23]
M. Dernovics ,
L. Ouerdane ,
L. Tastet ,
P. Guisti ,
H. Preund’homme ,
R. Lobinski ,
Detection and characterization of artefact compounds during selenium speciation analysis in yeast by ICP-MS-assisted MALDI MS, oMALDI MS/MS and LC-ES-MS/MS.
J. Anal. At. Spectrom. 2006
, 21, 703.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
S. H. Wright ,
A. Raab ,
J. N. Tabudravu ,
J. Feldmann ,
P. F. Long ,
C. N. Battershill ,
W. C. Dunlap ,
B. F. Milne ,
M. Jaspars ,
Marine metabolites and metal ion chelation: intact recovery and identification of an iron(II) complex in the extract of the ascidian Eudistoma gilboviride.
Angew. Chem. Int. Ed. 2008
, 47, 8090.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
[26]
[27]
[28]
D. M. Di Toro ,
H. E. Allen ,
H. L. Bergman ,
J. S. Meyer ,
P. R. Paquin ,
R. C. Santore ,
Biotic ligand model of the acute toxicity of metals. 1. Technical basis.
Environ. Toxicol. Chem. 2001
, 20, 2383.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
M. Pesavento ,
G. Alberti ,
R. Biesuz ,
Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: A review.
Anal. Chim. Acta 2009
, 631, 129.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[30]
L. Sigg ,
F. Black ,
J. Buffle ,
J. Cao ,
R. Cleven ,
W. Davison ,
J. Galceran ,
P. Gunkel ,
et al. Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters.
Environ. Sci. Technol. 2006
, 40, 1934.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[31]
R. De Marco ,
G. Clarke ,
B. Pejcic ,
Ion-selective electrode potentiometry in environmental analysis.
Electroanalysis 2007
, 19, 1987.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[32]
J. Galceran ,
J. Puy ,
J. Salvador ,
J. Cecilia ,
H. P. van Leeuwen ,
Voltammetric lability of metal complexes at spherical microelectrodes with various radii.
J. Electroanal. Chem. 2001
, 505, 85.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
N. Serrano ,
J. M. Diaz-Cruz ,
C. Arino ,
M. Esteban ,
Stripping chronopotentiometry in environmental analysis.
Electroanalysis 2007
, 19, 2039.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[34]
M. J. A. Rijkenberg ,
C. F. Powell ,
M. Dall’Osto ,
M. C. Nielsdottir ,
M. D. Patey ,
P. G. Hill ,
A. R. Baker ,
T. D. Jickells ,
R. M. Harrison ,
E. P. Achterberg ,
Changes in iron speciation following a Saharan dust event in the tropical North Atlantic Ocean.
Mar. Chem. 2008
, 110, 56.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
L. J. A. Gerringa ,
S. Blain ,
P. Laan ,
G. Sarthou ,
M. J. W. Veldhuis ,
C. P. D. Brussaard ,
E. Viollier ,
K. R. Timmermans ,
Fe-binding dissolved organic ligands near the Kerguelen Archipelago in the Southern Ocean (Indian sector).
Deep Sea Res. Part II Top. Stud. Oceanogr. 2008
, 55, 606.
| Crossref | GoogleScholarGoogle Scholar |
[36]
K. A. Hunter ,
P. W. Boyd ,
Iron-binding ligands and their role in the ocean biogeochemistry of iron.
Environ. Chem. 2007
, 4, 221.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
L. M. Laglera ,
C. M. G. Van den Berg ,
Evidence for geochemical control of iron by humic substances in sea water.
Limnol. Oceanogr. 2009
, 54, 610.
[38]
L. M. Laglera ,
G. Battaglia ,
C. M. G. van den Berg ,
Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron.
Anal. Chim. Acta 2007
, 599, 58.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[39]
S. G. Sander ,
A. Koschinsky ,
G. Massoth ,
M. Stott ,
K. A. Hunter ,
Organic complexation of copper in deep-sea hydrothermal vent systems.
Environ. Chem. 2007
, 4, 81.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[40]
L. M. Laglera ,
C. M. G. van den Berg ,
Copper complexation by thiol compounds in estuarine waters.
Mar. Chem. 2003
, 82, 71.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[41]
K. N. Buck ,
K. W. Bruland ,
Copper speciation in San Francisco Bay: A novel approach using multiple analytical windows.
Mar. Chem. 2005
, 96, 185.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
R. M. Town ,
H. P. van Leeuwen ,
Measuring marine iron(III) complexes by CLE-AdSV.
Environ. Chem. 2005
, 2, 80.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[43]
H. P. van Leeuwen ,
R. M. Town ,
Kinetic limitations in measuring stabilities of metal complexes by Competitive Ligand Exchange-Adsorptive Stripping Voltammetry (CLE-AdSV).
Environ. Sci. Technol. 2005
, 39, 7217.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[44]
P. L. Croot ,
J. W. Moffett ,
G. W. Luther ,
Polarographic determination of half-wave potentials for copper–organic complexes in seawater.
Mar. Chem. 1999
, 67, 219.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[45]
J. J. Tsang ,
T. F. Rozan ,
H. Hsu-Kim ,
K. M. Mullaugh ,
G. W. Luther ,
Pseudopolarographic determination of Cd2+ complexation in freshwater.
Environ. Sci. Technol. 2006
, 40, 5388.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[46]
I. Pizeta ,
G. Billon ,
D. Omanovic ,
V. Cuculic ,
C. Garnier ,
J. C. Fischer ,
Pseudopolarography of lead(II) in sediment and in interstitial water measured with a solid microelectrode.
Anal. Chim. Acta 2005
, 551, 65.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[47]
Y. Louis ,
C. Garnier ,
V. Lenoble ,
D. Omanovic ,
S. Mounier ,
I. Pizeta ,
Characterisation and modelling of marine dissolved organic matter interactions with major and trace cations.
Mar. Environ. Res. 2009
, 67, 100.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[48]
R. Nicolau ,
Y. Louis ,
D. Omanovic ,
C. Garnier ,
S. Mounier ,
I. Pizeta ,
Study of interactions of concentrated marine dissolved organic matter with copper and zinc by pseudopolarography.
Anal. Chim. Acta 2008
, 618, 35.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[49]
J. Buffle ,
M. L. Tercier-Waeber ,
Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements.
TrAC – Trend. Anal. Chem. 2005
, 24, 172.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[50]
[51]
G. W. Luther ,
B. T. Glazer ,
S. F. Ma ,
R. E. Trouwborst ,
T. S. Moore ,
E. Metzger ,
C. Kraiya ,
T. J. Waite ,
et al. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA).
Mar. Chem. 2008
, 108, 221.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[52]
M. L. Tercier-Waeber ,
F. Confalonieri ,
G. Riccardi ,
A. Sina ,
S. Noel ,
J. Buffle ,
F. Graziottin ,
Multi Physical–Chemical profiler for real-time in situ monitoring of trace metal speciation and master variables: development, validation and field applications.
Mar. Chem. 2005
, 97, 216.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[53]
M. L. Tercier-Waeber ,
F. Confalonieri ,
M. Koudelka-Hep ,
J. Dessureault-Rompre ,
F. Graziottin ,
J. Buffle ,
Gel-integrated voltammetric microsensors and submersible probes as reliable tools for environmental trace metal analysis and speciation.
Electroanalysis 2008
, 20, 240.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[54]
R. Feeney ,
S. P. Kounaves ,
Voltammetric measurement of arsenic in natural waters.
Talanta 2002
, 58, 23.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[55]
C. Belmont-Hébert ,
M. L. Tercier ,
J. Buffle ,
G. C. Fiaccabrino ,
N. F. de Rooij ,
M. Koudelka-Hep ,
Gel-integrated microelectrode arrays for direct voltammetric measurements of heavy metals in natural waters and other complex media.
Anal. Chem. 1998
, 70, 2949.
| Crossref | GoogleScholarGoogle Scholar |
[56]
Y. Louis ,
P. Cmuk ,
D. Omanovic ,
C. Garnier ,
V. Lenoble ,
S. Mounier ,
I. Pizeta ,
Speciation of trace metals in natural waters: The influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper.
Anal. Chim. Acta 2008
, 606, 37.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[57]
P. Salaün ,
C. M. G. van den Berg ,
Voltammetric detection of mercury and copper in seawater using a gold microwire electrode.
Anal. Chem. 2006
, 78, 5052.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[58]
R. De Marco ,
J. Martizano ,
Response of a copper(II) and iron(III) ion-selective electrode bielectrode array in saline media.
Talanta 2008
, 75, 1234.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[59]
J. Galceran ,
E. Companys ,
J. Puy ,
J. Cecilia ,
J. L. Garces ,
AGNES: a new electroanalytical technique for measuring free metal ion concentration.
J. Electroanal. Chem. 2004
, 566, 95.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[60]
J. Galceran ,
C. Huidobro ,
E. Companys ,
G. Alberti ,
AGNES: A technique for determining the concentration of free metal ions. The case of Zn(II) in coastal Mediterranean seawater.
Talanta 2007
, 71, 1795.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[61]
E. Companys ,
M. Naval-Sanchez ,
N. Martinez-Micaelo ,
J. Puy ,
J. Galceran ,
Measurement of free zinc concentration in wine with AGNES.
J. Agric. Food Chem. 2008
, 56, 8296.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[62]
S. Noël ,
M. L. Tercier-Waeber ,
L. Lin ,
J. Buffle ,
Complexing gel integrated microelectrode arrays for direct detection of free metal ion concentrations in natural waters.
J. Phys. IV 2003
, 107, 965.
| Crossref | GoogleScholarGoogle Scholar |
[63]
D. H. McNear ,
R. L. Chaney ,
D. L. Sparks ,
The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils: A multi-technique investigation.
Geochim. Cosmochim. Acta 2007
, 71, 2190.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[64]
P. G. Smith ,
I. Koch ,
R. A. Gordon ,
D. F. Mandoli ,
B. D. Chapman ,
K. J. Reimer ,
X-ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples.
Environ. Sci. Technol. 2005
, 39, 248.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[65]
N. K. Blute ,
D. J. Brabander ,
H. F. Hemond ,
S. R. Sutton ,
M. Newville ,
M. Rivers ,
Arsenic sequestration by ferric iron plaque on cattail roots.
Environ. Sci. Technol. 2004
, 38, 6074.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[66]
I. J. Pickering ,
R. C. Prince ,
D. E. Salt ,
G. N. George ,
Quantitative, chemically specific imaging of selenium transformation in plants.
Proc. Natl. Acad. Sci. USA 2000
, 97, 10717.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[67]
I. A. Thompson ,
D. M. Huber ,
C. A. Guest ,
D. G. Schulze ,
Fungal manganese oxidation in a reduced soil.
Environ. Microbiol. 2005
, 7, 1480.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[68]
J. Prietzel ,
J. Thieme ,
K. Eusterhues ,
D. Eichert ,
Iron speciation in soils and soil aggregates by synchrotron-based X-ray microspectroscopy (XANES, μ-XANES).
Eur. J. Soil Sci. 2007
, 58, 1027.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[69]
K. G. Scheckel ,
E. Lombi ,
S. A. Rock ,
N. J. McLaughlin ,
In vivo synchrotron study of thallium speciation and compartmentation in lberis intermedia.
Environ. Sci. Technol. 2004
, 38, 5095.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[70]
E. Lombi ,
K. G. Scheckel ,
R. D. Armstrong ,
S. Forrester ,
J. N. Cutler ,
D. Paterson ,
Speciation and distribution of phosphorus in a fertilized soil: A synchrotron-based investigation.
Soil Sci. Soc. Am. J. 2006
, 70, 2038.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[71]
A. A. Meharg ,
E. Lombi ,
P. N. Williams ,
K. G. Scheckel ,
J. Feldmann ,
A. Raab ,
Y. G. Zhu ,
R. Islam ,
Speciation and localization of arsenic in white and brown rice grains.
Environ. Sci. Technol. 2008
, 42, 1051.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[72]
G. Meitzner ,
J. Gardea-Toffesdey ,
J. Parsons ,
S. L. Scott ,
E. W. Deguns ,
The effect of cryogenic sample cooling on X-ray absorption spectra.
Microchem. J. 2005
, 81, 61.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[73]
D. H. McNear ,
E. Peltier ,
J. Everhart ,
R. L. Chaney ,
S. Sutton ,
M. Newville ,
M. Rivers ,
D. L. Sparks ,
Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale.
Environ. Sci. Technol. 2005
, 39, 2210.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[74]
C. G. Ryan ,
D. P. Siddons ,
G. Moorhead ,
R. Kirkham ,
P. A. Dunn ,
A. Dragone ,
G. De Geronimo ,
Large detector array and real-time processing and elemental image projection of X-ray and proton microprobe fluorescence data.
Nucl. Instrum. Methods Phys. Res. B 2007
, 260, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[75]
S. Pascarelli ,
O. Mathon ,
M. Munoz ,
T. Mairs ,
J. Susini ,
Energy-dispersive absorption spectroscopy for hard-X-ray micro-XAS applications.
J. Synchrotron Radiat. 2006
, 13, 351.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[76]
A. Manceau ,
M. C. Boisset ,
G. Sarret ,
R. L. Hazemann ,
M. Mench ,
P. Cambier ,
R. Prost ,
Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy.
Environ. Sci. Technol. 1996
, 30, 1540.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[77]
D. B. Hunter ,
P. M. Bertsch ,
In situ examination of uranium contaminated soil particles by micro-X-ray absorption and micro-fluorescence spectroscopies.
J. Radioanal. Nucl. Chem. 1998
, 234, 237.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[78]
H. Mimura ,
H. Yumoto ,
S. Matsuyama ,
Y. Sano ,
K. Yamamura ,
Y. Mori ,
M. Yabashi ,
Y. Nishino ,
K. Tamasaku ,
T. Ishikawa ,
K. Yamauchi ,
Efficient focusing of hard X rays to 25 nm by a total reflection mirror.
Appl. Phys. Lett. 2007
, 90, 051903.
| Crossref | GoogleScholarGoogle Scholar |
[79]
C. E. Martínez ,
K. A. Bazilevskaya ,
A. Lanzirotti ,
Zinc coordination to multiple ligand atoms in organic-rich surface soils.
Environ. Sci. Technol. 2006
, 40, 5688.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[80]
G. Sarret ,
J. Balesdent ,
L. Bouziri ,
J. M. Garnier ,
M. A. Marcus ,
N. Geoffroy ,
F. Panfili ,
A. Manceau ,
Zn speciation in the organic horizon of a contaminated soil by micro-X-ray fluorescence, micro- and powder-EXAFS spectroscopy, and isotopic dilution.
Environ. Sci. Technol. 2004
, 38, 2792.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[81]
E. Doelsch ,
I. Basile-Doelsch ,
J. Rose ,
A. Masion ,
D. Borschneck ,
J. L. Hazemann ,
H. Saint Macary ,
J. Y. Borrero ,
New combination of EXAFS spectroscopy and density fractionation for the speciation of chromium within an andosol.
Environ. Sci. Technol. 2006
, 40, 7602.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[82]
R. Terzano ,
M. Spagnuolo ,
B. Vekemans ,
W. de Nolf ,
K. Janssens ,
G. Falkenberg ,
S. Flore ,
P. Ruggiero ,
Assessing the origin and fate of Cr, Ni, Cu, Zn, Ph, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods.
Environ. Sci. Technol. 2007
, 41, 6762.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[83]
[84]
E. Mawji ,
M. Gledhill ,
J. A. Milton ,
G. A. Tarran ,
S. Ussher ,
A. Thompson ,
G. A. Wolff ,
P. J. Worsfold ,
E. P. Achterberg ,
Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean.
Environ. Sci. Technol. 2008
, 42, 8675.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[85]
C. Jung ,
V. Maeder ,
F. Funk ,
B. Frey ,
H. Sticher ,
E. Frossard ,
Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification.
Plant Soil 2003
, 252, 301.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[86]
E. Chekmeneva ,
R. Prohens ,
J. M. Diaz-Cruz ,
C. Arino ,
M. Esteban ,
Competitive binding of Cd and Zn with the phytochelatin (gamma-Glu-Cys)(4)-Gly: Comparative study by mass spectrometry, voltammetry-multivariate curve resolution, and isothermal titration calorimetry.
Environ. Sci. Technol. 2008
, 42, 2860.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[87]
J. Kim ,
G. V. Korshin ,
A. I. Frenkel ,
A. B. Velichenko ,
Electrochemical and XAES studies of effects of carbonate on the oxidation of arsenite.
Environ. Sci. Technol. 2006
, 40, 228.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[88]
C. Noubactep ,
D. Chen-Braucher ,
T. Schlothauer ,
Arsenic release from a natural rock under near-natural oxidizing conditions.
Eng. Life Sci. 2008
, 8, 622.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[89]
M. S. Díaz-Cruz ,
J. M. Diaz-Cruz ,
M. Esteban ,
Comparison of voltammetry assisted by multivariate analysis with EXAFS as applied to the study of Cd- and Zn-binding of metallothionein related peptides.
Electroanalysis 2002
, 14, 899.
| Crossref | GoogleScholarGoogle Scholar |
[90]
I. Arčon ,
A. Pastrello ,
L. Catalano ,
M. de Nobili ,
P. Cantone ,
L. Leita ,
Interaction between Fe–cyanide complex and humic acids.
Environ. Chem. Lett. 2006
, 4, 191.
| Crossref | GoogleScholarGoogle Scholar |
[91]
A. Raab ,
H. Schat ,
A. A. Meharg ,
J. Feldmann ,
Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations.
New Phytol. 2005
, 168, 551.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
1 Although in this case not equivalent without naming the element or species; μg L–1 or ppb are commonly used in studies that utilise ICPMS or AAS as the main analytical technique, whereas studies that use electrochemical methods or molecular MS express concentrations in molarities.