The role of speciation in environmental chemistry and the case for quality criteria
Graeme E. Batley A , Kevin A. Francesconi B and William A. Maher CA Centre for Environmental Contaminants Research, CSIRO Land and Water, Bangor, NSW 2234, Australia. Email: graeme.batley@csiro.au
B Institute of Chemistry – Analytical Chemistry, Karl-Franzens University Graz, 8010 Graz, Austria. Email: kevin.francesconi@uni-graz.at
C Ecochemistry Laboratory, Institute of Applied Ecology, University of Canberra, Bruce, ACT 2601, Australia. Email: Bill.Maher@canberra.edu.au
Environmental Chemistry 6(4) 273-274 https://doi.org/10.1071/EN09093
Submitted: 17 July 2009 Accepted: 28 July 2009 Published: 25 August 2009
[1]
D. M. Templeton ,
F. Ariese ,
R. Cornelis ,
L. G. Danielsson ,
H. Muntau ,
H. P. van Leeuwen ,
R. Lobinski ,
Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000).
Pure Appl. Chem. 2000
, 72, 1453.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[2]
J. Feldmann ,
P. Salaün ,
E. Lombi ,
Critical review perspective: elemental speciation analysis methods in environmental chemistry – moving towards methodological integration.
Environ. Chem. 2009
, 6, 275.
| Crossref | GoogleScholarGoogle Scholar |
[3]
H. P. van Leeuwen ,
R. M. Town ,
J. Buffle ,
R. F. M. J. Cleven ,
W. Davison ,
J. Puy ,
W. H. van Riemsdijk ,
L. Sigg ,
Dynamic speciation analysis and bioavailability of metals in aquatic systems.
Environ. Sci. Technol. 2005
, 39, 8545.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[4]
J. G. Hering ,
Metal speciation and bioavailability: revisiting the ‘big questions’.
Environ. Chem. 2009
, 6, 290.
| Crossref | GoogleScholarGoogle Scholar |
[5]
R. E. Sturgeon ,
K. A. Francesconi ,
Enhancing reliability of elemental speciation results – quo vadis?
Environ. Chem. 2009
, 6, 294.
| Crossref | GoogleScholarGoogle Scholar |
[6]
R. Andrahennadi ,
J. Fu ,
M. J. Pushie ,
C. I. E. Wiramanaden ,
G. N. George ,
I. J. Pickering ,
Insect excretes unusual six-coordinate pentavalent arsenic species.
Environ. Chem. 2009
, 6, 298.
| Crossref | GoogleScholarGoogle Scholar |
[7]
E. J. J. Kalis ,
T. A. Davis ,
R. M. Town ,
H. P. van Leeuwen ,
Impact of pH on CdII partitioning between alginate gel and aqueous media.
Environ. Chem. 2009
, 6, 305.
| Crossref | GoogleScholarGoogle Scholar |
[8]
N. Yassaa ,
A. Wishkerman ,
F. Keppler ,
J. Williams ,
Fast determination of methyl chloride and methyl bromide emissions from dried plant matter and soil samples using HS-SPME and GC-MS: method and first results.
Environ. Chem. 2009
, 6, 311.
| Crossref | GoogleScholarGoogle Scholar |
[9]
L. Kuenstl ,
S. Griesel ,
A. Prange ,
W. Goessler ,
Arsenic speciation in bodily fluids of harbor seals (Phoca vitulina) and harbor porpoises (Phocoena phocoena).
Environ. Chem. 2009
, 6, 319.
| Crossref | GoogleScholarGoogle Scholar |
[10]
T. Isobe ,
H. Oda ,
N. Takayanagi ,
T. Kunisue ,
H. Komori ,
N. Arita ,
N. Ueda ,
M. Nose ,
T. Yamada ,
S. Takahashi ,
S. Tanabe ,
Hexabromocyclododecanes in human adipose tissue from Japan.
Environ. Chem. 2009
, 6, 328.
| Crossref | GoogleScholarGoogle Scholar |
[11]
A. Schneider ,
C. Nguyen ,
L. Denaix ,
Estimation of the association and dissociation rate constants of Cd complexes with various aminopolycarboxylic acids by an exchange method.
Environ. Chem. 2009
, 6, 334.
| Crossref | GoogleScholarGoogle Scholar |
[12]
C.-C. Lee ,
Y.-F. Jhuang ,
L.-L. Liu ,
C.-Y. Hsieh ,
C. S. Chen ,
C.-J. Tien ,
The major source and impact of phenyltin contamination on freshwater aquaculture clam Corbicula fluminea and wild golden apple snail Pomacea canaliculata.
Environ. Chem. 2009
, 6, 341.
| Crossref | GoogleScholarGoogle Scholar |
[13]
G. C. Silva ,
I. F. Vasconcelos ,
R. P. de Carvalho ,
M. S. S. Dantas ,
V. S. T. Ciminelli ,
Molecular modeling of iron and arsenic interactions with carboxy groups in natural biomass.
Environ. Chem. 2009
, 6, 350.
| Crossref | GoogleScholarGoogle Scholar |