Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

The role of speciation in environmental chemistry and the case for quality criteria

Graeme E. Batley A , Kevin A. Francesconi B and William A. Maher C
+ Author Affiliations
- Author Affiliations

A Centre for Environmental Contaminants Research, CSIRO Land and Water, Bangor, NSW 2234, Australia. Email: graeme.batley@csiro.au

B Institute of Chemistry – Analytical Chemistry, Karl-Franzens University Graz, 8010 Graz, Austria. Email: kevin.francesconi@uni-graz.at

C Ecochemistry Laboratory, Institute of Applied Ecology, University of Canberra, Bruce, ACT 2601, Australia. Email: Bill.Maher@canberra.edu.au

Environmental Chemistry 6(4) 273-274 https://doi.org/10.1071/EN09093
Submitted: 17 July 2009  Accepted: 28 July 2009   Published: 25 August 2009


References


[1]   D. M. Templeton , F. Ariese , R. Cornelis , L. G. Danielsson , H. Muntau , H. P. van Leeuwen , R. Lobinski , Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure Appl. Chem. 2000 , 72,  1453.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[2]   J. Feldmann , P. Salaün , E. Lombi , Critical review perspective: elemental speciation analysis methods in environmental chemistry – moving towards methodological integration. Environ. Chem. 2009 , 6,  275.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   H. P. van Leeuwen , R. M. Town , J. Buffle , R. F. M. J. Cleven , W. Davison , J. Puy , W. H. van Riemsdijk , L. Sigg , Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol. 2005 , 39,  8545.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   J. G. Hering , Metal speciation and bioavailability: revisiting the ‘big questions’. Environ. Chem. 2009 , 6,  290.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   R. E. Sturgeon , K. A. Francesconi , Enhancing reliability of elemental speciation results – quo vadis? Environ. Chem. 2009 , 6,  294.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   R. Andrahennadi , J. Fu , M. J. Pushie , C. I. E. Wiramanaden , G. N. George , I. J. Pickering , Insect excretes unusual six-coordinate pentavalent arsenic species. Environ. Chem. 2009 , 6,  298.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   E. J. J. Kalis , T. A. Davis , R. M. Town , H. P. van Leeuwen , Impact of pH on CdII partitioning between alginate gel and aqueous media. Environ. Chem. 2009 , 6,  305.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   N. Yassaa , A. Wishkerman , F. Keppler , J. Williams , Fast determination of methyl chloride and methyl bromide emissions from dried plant matter and soil samples using HS-SPME and GC-MS: method and first results. Environ. Chem. 2009 , 6,  311.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   L. Kuenstl , S. Griesel , A. Prange , W. Goessler , Arsenic speciation in bodily fluids of harbor seals (Phoca vitulina) and harbor porpoises (Phocoena phocoena). Environ. Chem. 2009 , 6,  319.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   T. Isobe , H. Oda , N. Takayanagi , T. Kunisue , H. Komori , N. Arita , N. Ueda , M. Nose , T. Yamada , S. Takahashi , S. Tanabe , Hexabromocyclododecanes in human adipose tissue from Japan. Environ. Chem. 2009 , 6,  328.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   A. Schneider , C. Nguyen , L. Denaix , Estimation of the association and dissociation rate constants of Cd complexes with various aminopolycarboxylic acids by an exchange method. Environ. Chem. 2009 , 6,  334.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   C.-C. Lee , Y.-F. Jhuang , L.-L. Liu , C.-Y. Hsieh , C. S. Chen , C.-J. Tien , The major source and impact of phenyltin contamination on freshwater aquaculture clam Corbicula fluminea and wild golden apple snail Pomacea canaliculata. Environ. Chem. 2009 , 6,  341.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   G. C. Silva , I. F. Vasconcelos , R. P. de Carvalho , M. S. S. Dantas , V. S. T. Ciminelli , Molecular modeling of iron and arsenic interactions with carboxy groups in natural biomass. Environ. Chem. 2009 , 6,  350.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1