Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

The aqueous geochemistry of thallium: speciation and solubility of thallium in low temperature systems

Yongliang Xiong
+ Author Affiliations
- Author Affiliations

Sandia National Laboratories, 4100 National Parks Highway, Carlsbad, NM 88220, USA. Email: yxiong@sandia.gov

Environmental Chemistry 6(5) 441-451 https://doi.org/10.1071/EN08086
Submitted: 6 November 2008  Accepted: 12 August 2009   Published: 22 October 2009

Environmental context. The aqueous geochemistry of thallium is not well known in comparison with cadmium and lead, although it is more highly toxic, and at the same time has a wide range of industrial applications. A database allowing us to reliably predict the speciation and solubility of thallium in various environments in low temperature systems would be invaluable in providing some understanding of thallium’s mobilisation and mitigation. We propose here such a thermodynamic database based on critical reviews.

Abstract. Thallium is a highly toxic element, and at the same time it has a wide range of applications in industry. Therefore, it is important to know its speciation and solubility under low temperature conditions. This study expands the thermodynamic database of the first paper of this series on the aqueous geochemistry of thallium by providing the formation constants of some important thallium complexes, including TlEDTA3–, TlOx (Ox: oxalate), TlSuc (Suc: succinate), TlMal (Mal: malonate) and TlHPO4. This study also recommends the solubility product constant of TlCl(s) as 10–3.65. The combined database allows us to model reliably the speciation and solubility of thallium in the Earth surface environments. As an example, the speciation and solubility of thallium in soil solutions are presented based on thermodynamic calculations.

Additional keywords: environmental mediation, Guizhou Province, lanmuchangite, lorandite, specific interaction theory (SIT).


Acknowledgements

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.


References


[1]   Repetto G., del Peso A., Repetto M., Human Thallium Toxicity, in Thallium in the Environment (Ed. J. O. Nriagu) 1998, pp. 167–199 (Wiley: New York).

[2]   L. Ralph , M. R. Twiss , Comparative toxicty of thallium(I), thallium(III), and cadmium(II) to the unicellular alga Chlorella isolated from Lake Erie. Bull. Environ. Contam. Toxicol. 2002 , 68,  261.
        |  CAS | PubMed |  open url image1

[3]   J. Pickard , R. Yang , B. Duncan , C. A. McDevitt , C. Eickhoft , Acute and sublethal toxicity of thallium to aquatic organisms. Bull. Environ. Contam. Toxicol. 2001 , 66,  94.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   T.-S. Lin , P. Meier , J. Nriagu , Acute toxicity of thallium to Daphnia magna and Ceriodaphnia dubia. Bull. Environ. Contam. Toxicol. 2005 , 75,  350.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[5]   A. Léonard , G. B. Gerber , Mutagenicity, carcinogenicity and teratogenicity of thallium compounds. Mutat. Res. Rev. Mutat. Res. 1997 , 387,  47.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   W. Scholl , Bestimmung von Thallium in verschiedenen anorganischen und organischen Matrices – ein einfaches photometrisches Routineverfahren mit Brillantgrun. Landwirt. Forsch. 1980 , 37,  275.
        |  CAS |  open url image1

[7]   G. F. Hofer , K. Aichberger , U. S. Hochmair , Thalliumgehalte landwirtschaftlich genutzter Boden Oberosterreichs. Die Bodenkultur: Journal for Land Management, Food and Environment 1990 , 41,  187.
        |  CAS |  open url image1

[8]   W. Qi , Y. Chen , J. Cao , Indium and thallium background contents in soils in China. Int. J. Environ. Stud. 1992 , 40,  311.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[9]   Sager M., Thallium in Agricultural Practice, in Thallium in the Environment (Ed. J. O. Nriagu) 1998, pp. 59–87 (Wiley: New York).

[10]   M. Heim , O. Wappelhorst , B. Markert , Thallium in terrestrial environments-Occurrence and effects. Ecotoxicology 2002 , 11,  369.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   A. Tremel , P. Masson , T. Sterckeman , D. Baize , M. Mench , Thallium in French agrosystems-I. Thallium contents in arable soils. Environ. Pollut. 1997 , 95,  293.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   D. Zhou , D. Liu , Chronic thallium poisoning in a rural area of Guizhou province, China. J. Environ. Health 1985 , 48,  14.
         open url image1

[13]   D. Stüben , Z. Berner , B. Kappes , H. Puchelt , Environmental monitoring of heavymetals and arsenic from Ag-Pb-Zn mining: A case study over two millennia. Environ. Monit. Assess. 2001 , 70,  181.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[14]   J. Lis , A. Pasieczna , B. Karbowska , W. Zembrzuski , Z. Lukaszewski , Thallium in soils and stream sediments of a Zn-Pb mining and smelting area. Environ. Sci. Technol. 2003 , 37,  4569.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   T.-F. Xiao , J. Guha , D. Boyle , C.-Q. Liu , C.-Q. Zheng , G. C. Wilson , A. Rouleau , Chen, Naturally occurring thallium: A hidden geoenvironmental health hazard? Environ. Int. 2004 , 30,  501.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   M. Bäckström , H. Bohlin , S. Karlsson , N. G. Holm , Element (Ag, Cd, Cu, Pb, Sb, Tl and Zn), element ratio and lead isotope profiles in a sediment affected by a mining operation episode during the late 19th century. Water Air Soil Pollut. 2006 , 177,  285.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   F. Martín , I. García , C. Dorronsoro , M. Simón , J. Aguilar , I. Ortíz , E. Fernández , J. Fernández , Thallium behavior in soils polluted by pyrite tailings (Aznalcollar, Spain). Soil and Sediment Contamination: An International Journal 2004 , 13,  25.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   J. Medved’ , M. Kalis , I. Hagarova , P. Matus , M. Bujdos , J. Kubova , Thallium fractionation in polluted environmental samples using a modified BCR three-step sequential extraction procedure and its determination by electrothermal atomic adsorption spectrometry. Chemical Papers 2008 , 62,  168.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[19]   Y.-L. Xiong , Hydrothermal thallium mineralization up to 300°C: a thermodynamic approach. Ore Geol. Rev. 2007 , 32,  291.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   J. P. Manners , K. G. Morallee , R. J. P. Williams , The complex-ion chemistry of thallium(I). J. Inorg. Nucl. Chem. 1971 , 33,  2085.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   Anderegg G., Critical Survey of Stability Constants of EDTA, IUPAC Chemical Data Series 1977.

[22]   D. D. Wagman , W. H. Evans , V. B. Parker , R. H. Schumm , I. Halow , S. Bailey , K. Churney , R. I. Nuttall , The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 1982 , 11,  2-1.
         open url image1

[23]   Kubaschewski O., Alcock C. B., Spencer P. J., Materials Thermochemistry, 6th edition 1993 (Pergamon Press: New York).

[24]   L. Ciavatta , The specific interaction theory in evaluating ionic equilibria. Ann. Chim. 1980 , 70,  551.
        |  CAS |  open url image1

[25]   H. C. Helgeson , D. H. Kirkham , G. C. Flowers , Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and partial molal and standard and relative partial molal properties to 600°C and 5 kb. Am. J. Sci. 1981 , 281,  1249.
        |  CAS |  open url image1

[26]   Mizera J., Bond A. H., Choppin G. R., Moore R. C., Dissociation Constants of Carboxylic Acids at High Ionic Strengths, in Actinide Speciation in High Ionic Strength Media (Eds D. Reed, S. Clark, R.-F. Lin) 1999, pp. 113–124 (Kluwer/Plenum Publishers: New York).

[27]   Silcock H. L., Solubilities of Inorganic and Organic Compounds, Volume 3 1979 (Pergamon Press: New York).

[28]   Y.-L. Xiong , Estimation of medium effects on equilibrium constants in moderate and high ionic strength solutions at elevated temperatures by using specific interaction theory (SIT): interaction coefficients involving Cl, OH and Ac up to 200°C and 400 bars. Geochem. Trans. 2006 , 7,  4.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[29]   Guillaumont R., Fanghanel T., Fuger J., Grenthe I., Neck V., Palmer D. A., Rand M. H., Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium 2003 (Elsevier: New York).

[30]   K. H. Khoo , K. R. Fernando , Solubility and activity coefficient of thallium(I) chloride in the system TlCl+HCl+NaCl+H2O at 25°C. J. Solution Chem. 1991 , 20,  1199.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[31]   M. H. Panckhurst , J. B. Macaskill , Specific interactions in mixed electrolyte solutions from solubility measurements. J. Solution Chem. 1976 , 5,  483.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   K. H. Khoo , K. R. Fernando , R. J. Fereday , Solubility and Pitzer model parameters in thallium(I) chloride systems, TlCl+MgCl2+H2O and TlCl+CaCl2+H2O. J. Chem. Soc., Faraday Trans. 1995 , 91,  1759.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[33]   K. H. Khoo , K. R. Fernando , R. J. Fereday , C.-Y. Chan , Pitzer model parameters for sparingly soluble salts from solubility measurement. The systems TlCl+SrCl2+H2O and TlCl+BaCl2+H2O. J. Solution Chem. 1995 , 24,  1039.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[34]   P. W. Dimmock , P. Warwick , P. A. Robbins , Approaches to predicting stability constants. Analyst 1995 , 120,  2159.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   Smith R. M., Martell A. E., NIST Critical Selected Stability Constants of Metal Complexes Database Version 8.0 for Windows. NIST Standard Reference Database 46 2004 (National Institute of Standards and Technology, US Department of Commerce: Gaithersburg, MD).

[36]   Wood S. A., Organic matter: Supergene Enrichment and Dispersion, in Ore Genesis and Exploration: The Roles of organic matter. Reviews in Economic Geology, Vol. 9 (Eds T. H. Giordano, R. M. Kettler, S. A. Wood) 2000, pp. 157–192 (Society of Economic Geologist: Littleton, CO).

[37]   G. Tyler , T. Olsson , Conditions related to solubility of rare and minor elements in forest soils. J. Plant Nutr. Soil Sci. 2002 , 165,  594.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[38]   B. W. Strobel , I. Bernhoht , O. K. Borggaard , Low-molecular-weight aliphatic carboxylic acids in soil solutions under different vegetations determined by capillary zone electrophoresis. Plant Soil 1999 , 212,  115.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   D. L. Jones , Organic acids in the rhizosphere – a critical review. Plant Soil 1998 , 205,  25.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[40]   T. Mansfeldt , Redox potential of bulk soil and soil solution concentration of nitrate, manganese, iron, and sulfate in two Gleysols. J. Plant Nutr. Soil Sci. 2004 , 167,  7.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   Wolery T. J., EQ3/6, A Software Package for Geochemical Modeling of Aqueous Systems: Package Overview and Installation Guide (Version 7.0), UCRL-MA-110662-PT-I 1992 (Lawrence Livermore National Laboratory: Livermore, CA).

[42]   Wolery T. J., EQ3NR: A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations: Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0), UCRL-MA-110662 PT III 1992 (Lawrence Livermore National Laboratory: Livermore, CA).

[43]   van Breemen N., Burrman P., Soil Formation 1998 (Kluwer Academic Publishers: Boston).

[44]   S. Modabberi , F. Moore , Environmental geochemistry of Zarshuran Au-As deposit, NW Iran. Environ. Geol. 2004 , 46,  796.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[45]   Vink B. W., Thallium in the (Sub)surface Environment: Its Mobility in Terms of Eh and pH, in Thallium in the Environment (Ed. J. O. Nriagu) 1998, pp. 45–58 (Wiley: New York).

[46]   Z.-B. Li , L. M. Shuman , Extractability of zinc, cadmium, and nickel in soils amended with EDTA. Soil Sci. 1996 , 161,  226.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[47]   I. Lo , W.-H. Zhang , Study on optimal conditions for recovery of EDTA from soil washing effluents. J. Environ. Eng. 2005 , 131,  1507.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[48]   N. Papassiopi , S. Tambouris , A. Kontopoulos , Removal of heavy metals from calcareous contaminated soils by EDTA leaching. Water Air Soil Pollut. 1999 , 109,  1.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[49]   Qiu R.-L., Zou Z.-L., Zhao Z.-H., Zhang W.-H., Zhang T., Dong H.-Y., Wei X.-G., Removal of trace and major metals by soil washing with Na2EDTA and oxalate. J. Soils Sediments 2009, in press. doi:10.1007/S11368-009-0083-Z

[50]   Li G.-Z., A study of ore compositions and thallium occurrence in mercury–thallium deposits at Lanmuchang, Xingren County, southwestern Guizhou Province, China. Guizhou Geology 1996, 13, 24. [In Chinese with English abstract]

[51]   T.-F. Xiao , D. Bolye , J. Guha , A. Rouleau , Y. Hong , B.-S. Zheng , Groundwater-related thallium transfer processes and their impacts on the ecosystem: southwest Guizhou Province, China. Appl. Geochem. 2003 , 18,  675.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[52]   Chen D.-Y., Wang G.-X., Zou Z.-X., Chen Y.-M., The discovery and study of Lanmuchangite, the first new thallium mineral, in China. Journal of Guizhou University of Technology 2001, 30, 5. [In Chinese with English abstract]

[53]   D.-Y. Chen , G.-X. Wang , Z.-X. Zou , Y.-M. Chen , Lanmuchangite, a new thallium hydrous sulfate from Lanmuchang, Guizhou Province, China. Chin. J. Geochem. 2003 , 22,  185.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[54]   G. E. Graham , K. D. Kelley , The Drenchwater deposit, Alaska: An example of natural low pH environment resulting from weathering of an undisturbed shale-hosted Zn-Pb-Ag deposit. Appl. Geochem. 2009 , 24,  232.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[55]   A. R. Jacobson , M. B. McBride , P. Bayeye , T. Steenhuis , Environmental factors determining the trace-level sorption of silver and thallium to soils. Sci. Total Environ. 2005 , 345,  191.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[56]   Tremel A., Masson P., Sterckeman T., Baize D., Mench M., Preliminary investigation on thallium in soils in France, in The 3rd International Conference of Biogeochemistry of Trace Elements 1995, Paris.

[57]   Robie R. A., Hemingway B. S., Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures, US Geological Survey Bulletin 2131 1995 (United Sates Government Printing Office: Washington, DC).