Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Understanding mesotrione photochemistry when applied on leaves

Delphine Lavieille A , Alexandra ter Halle A and Claire Richard A B
+ Author Affiliations
- Author Affiliations

A Laboratoire de Photochimie Moléculaire et Macromoléculaire, Unité Mixte de Recherche 6505, Centre National de la Recherche Scientifique-Université Blaise Pascal, F-63177 Aubière Cedex, France.

B Corresponding author. Email: claire.richard@univ-bpclermont.fr

Environmental Chemistry 5(6) 420-425 https://doi.org/10.1071/EN08073
Submitted: 8 October 2008  Accepted: 21 November 2008   Published: 18 December 2008

Environmental context. Pesticide has greatly contributed to the increased yields and regular production in agriculture; however, its use is nowadays more and more being questioned. Current authorisation procedures are more and more comprehensive (evaluating their environmental fate and impact on ecosystems and on human health) but are not yet fully satisfactory. Here we demonstrate the utility of evaluating the stability of pesticide towards sunlight when applied on crops.

Abstract. We developed a methodology to perform laboratory studies that approach field conditions. To demonstrate our methods, we used the herbicide mesotrione. Simulated solar light irradiation experiments were conducted on several cuticular wax films. Adjuvants greatly favoured the rate of mesotrione photolysis. Specifically, the photolytic transformation of formulated mesotrione was 15 times faster than that of pure mesotrione. The morphology and composition of the wax films had a greater effect on the photolysis of formulated mesotrione than of pure mesotrione, which formed aggregates on the waxes. This shows the importance of considering the formulation when studying pesticide photolysis on crops. To corroborate our model, we conducted experiments on detached leaves. The rates of photolysis on leaves and on wax films were of the same order of magnitude. Finally, the mesotrione rate of photolysis on leaves is much higher compared with data from the literature in water and on soils. Photolysis is likely to be a fast dissipation process on crops. The photodegradation of pesticide on crops should be systematically evaluated.

Additional keywords: formulation, solar light, triketone, wax films.


Acknowledgements

The authors thank N. Lajoinie for her help in the greenhouse. We also thank Christophe Vial for his kind help in performing the statistical analyses.


References


[1]   M. Leistra , J. H. Smelt , J. H. Weststrate , F. van den Berg , R. Aalderink , Volatilization of the pesticides chlorpyrifos and fenpropimorph from a potato crop. Environ. Sci. Technol. 2006 , 40,  96.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[2]   J. Hassink , K. Platz , R. Stadler , W. Zangmeister , G. Fent , M. Moendel , R. Kubiak , Comparison of wind tunnel and field experiments to measure potential deposition of fenpropimorph following volatilisation from treated crops. Pest Manag. Sci. 2007 , 63,  171.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[3]   R. C. Kirkwood , Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic. Sci. 1999 , 55,  69.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[4]   P. J. G. Stevens , E. A. Baker , Factors affecting the foliar absorption and redistribution of pesticides. 1. Properties of leaf surfaces and their interactions with spray droplets. Pestic. Sci. 1987 , 19,  265.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   J. Schönherr , Effects of monodisperse alcohol ethoxylates on mobility of 2,4-D in isolated plant cuticles. Pestic. Sci. 1993 , 38,  155.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   L. Schreiber , J. Schoenherr , Mobilities of organic compounds in reconstituted cuticular wax of barley leaves: determination of diffusion coefficients. Pestic. Sci. 1993 , 38,  353.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   D. Stock , P. J. Holloway , Possible mechanisms for surfactant-induced foliar uptake of agrochemicals. Pestic. Sci. 1993 , 38,  165.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[8]   W. A. Forster , J. A. Zabkiewicz , M. Riederer , Mechanisms of cuticular uptake of xenobiotics into living plants: 1. Influence of xenobiotic dose on the uptake of three model compounds applied in the absence and presence of surfactants into Chenopodium album, Hedera helix and Stephanotis floribunda leaves. Pest Manag. Sci. 2004 , 60,  1105.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   W. A. Forster , J. A. Zabkiewicz , Z. Liu , Cuticular uptake of xenobiotics into living plants. Part 2: Influence of the xenobiotic dose on the uptake of bentazone, epoxiconazole and pyraclostrobin, applied in the presence of various surfactants, into Chenopodium album, Sinapis alba and Triticum aestivum leaves. Pest Manag. Sci. 2006 , 62,  664.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[10]   E. Wild , J. Dent , J. L. Barber , G. O. Thomas , K. C. Jones , A novel analytical approach for visualizing and tracking organic chemicals in plants. Environ. Sci. Technol. 2004 , 38,  4195.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   E. Wild , J. Dent , G. O. Thomas , K. C. Jones , Real-time visualization and quantification of PAH photodegradation on and within plant leaves. Environ. Sci. Technol. 2005 , 39,  268.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   E. Wild , K. C. Jones , Seeing chemicals in environmental samples. Environ. Sci. Technol. 2007 , 41,  5934.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   R. D. Wauchope , W. C. Johnson , H. R. Sumner , Foliar and soil deposition of pesticide sprays in peanuts and their washoff and runoff under simulated worst-case rainfall conditions. J. Agric. Food Chem. 2004 , 52,  7056.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   F. Schynowski , W. Schwack , Photochemistry of parathion on plant surfaces: relationship between photodecomposition and iodine number of the plant cuticle. Chemosphere 1996 , 33,  2255.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   A. ter Halle , D. Drncova , C. Richard , Phototransformation of the herbicide sulcotrione on maize cuticular wax. Environ. Sci. Technol. 2006 , 40,  2989.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   J. Dolinova , J. Klanova , P. Klan , I. Holoubek , Photodegradation of organic pollutants on the spruce needle wax surface under laboratory conditions. Chemosphere 2004 , 57,  1399.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   J. Niu , J. Chen , B. Henkelmann , X. Quan , F. Yang , A. Kettrup , K.-W. Schramm , Photodegradation of PCDD/Fs adsorbed on spruce (Picea abies (L.) Karst.) needles under sunlight irradiation. Chemosphere 2003 , 50,  1217.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[18]   P. Cabras , A. Angioni , V. L. Garau , M. Melis , F. M. Pirisi , E. V. Minelli , Effect of epicuticular waxes of fruits on the photodegradation of fenthion. J. Agric. Food Chem. 1997 , 45,  3681.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[19]   J. K. McCrady , S. P. Maggard , Uptake and photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin sorbed to grass foliage. Environ. Sci. Technol. 1993 , 27,  343.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[20]   L. Scrano , S. A. Bufo , P. Perucci , P. Meallier , M. Mansour , Photolysis and hydrolysis of rimsulfuron. Pestic. Sci. 1999 , 55,  955.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   G. R. Moran , 4-Hydroxyphenylpyruvate dioxygenase. Arch. Biochem. Biophys. 2005 , 433,  117.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[22]   M. Kavana , G. R. Moran , Interaction of (4-hydroxyphenyl)pyruvate dioxygenase with the specific inhibitor 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione. Biochemistry 2003 , 42,  10238.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   G. Mitchell , D. W. Bartlett , T. E. M. Fraser , T. R. Hawkes , D. C. Holt , J. K. Townson , R. A. Wichert , Mesotrione: a new selective herbicide for use in maize. Pest Manag. Sci. 2001 , 57,  120.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   J. Rouchaud , O. Neus , H. Eelen , R. Bulcke , Mobility and adsorption of the triketone herbicide mesotrione in the soil of corn crops. Toxicol. Environ. Chem. 2001 , 79,  211.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   J. S. Dyson , S. Beulke , C. D. Brown , M. C. G. Lane , Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications 16. J. Environ. Qual. 2002 , 31,  613.
        |  CAS | PubMed |  open url image1

[26]   ZA 1296, ISO proposed name mesotrione, Directive 91/414/EEC. Draft SC 10700 1999, p. 223 (International Organization for Standardization: Geneva).

[27]   ZA 1296, ISO proposed name mesotrione, Directive 91/414/EEC. Draft SC 10700 1999, p. 252 (International Organization for Standardization: Geneva).

[28]   A. ter Halle , C. Richard , Simulated solar light irradiation of mesotrione in natural waters. Environ. Sci. Technol. 2006 , 40,  3842.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[29]   ZA 1296, ISO proposed name mesotrione, Directive 91/414/EEC Draft SC 10700 1999, p. 249 (International Organization for Standardization: Geneva).

[30]   ZA 1296, ISO proposed name mesotrione, Directive 91/414/EEC Draft SC 10700 1999, p. 226 (International Organization for Standardization: Geneva).

[31]   P. Avato , G. Bianchi , N. Pogna , Chemosystematics of surface lipids from maize and some related species. Phytochemistry 1990 , 29,  1571.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   E. A. Veraverbeke , J. Lammertyn , B. M. Nicolai , J. Irudayaraj , Spectroscopic evaluation of the surface quality of apple. J. Agric. Food Chem. 2005 , 53,  1046.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   Martin J. T., Juniper B. E., The Cuticles of Plants 1970 (St Martin’s Press: London).

[34]   P. Sutton , C. Richards , L. Buren , L. Glasgow , Activity of mesotrione on resistant weeds in maize. Pest Manag. Sci. 2002 , 58,  981.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[35]   A. Sen , Chemical composition and morphology of epicuticular waxes from leaves of Solanum tuberosum. Z. Naturforsch. C 1987 , 42,  1153.
        |  CAS |  open url image1

[36]   E. C. Reynhardt , M. Riederer , Structures and molecular dynamics of plant waxes. II. Cuticular waxes from leaves of Fagus sylvatica L. and Hordeum vulgare L. Eur. Biophys. J. 1994 , 23,  59.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   P. Alferness , L. Wiebe , Determination of mesotrione residues and metabolites in crops, soil, and water by liquid chromatography with fluorescence detection. J. Agric. Food Chem. 2002 , 50,  3926.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[38]   S. A. MacIsaac , R. N. Paul , M. D. Devine , A scanning electron microscope study of glyphosate deposits in relation to foliar uptake. Pestic. Sci. 1991 , 31,  53.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   R. J. L. Ramsey , G. R. Stephenson , J. C. Hall , A review of the effects of humidity, humectants, and surfactant composition on the absorption and efficacy of highly water-soluble herbicides. Pestic. Biochem. Physiol. 2005 , 82,  162.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[40]   R. J. Butselaar , F. W. R. Gonggrijp , New fatty-amine-based adjuvants: mode of action and applications. Pestic. Sci. 1993 , 37,  212.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   M. W. Lam , K. Tantuco , S. A. Mabury , PhotoFate: a new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. Environ. Sci. Technol. 2003 , 37,  899.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[42]   D. Dulin , T. Mill , Development and evaluation of sunlight actinometers. Environ. Sci. Technol. 1982 , 16,  815.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1