Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

CrIII binding by surface polymers in natural biomass: the role of carboxylic groups

Pablo Lodeiro A , Adrian Fuentes A , Roberto Herrero A B and Manuel E. Sastre de Vicente A
+ Author Affiliations
- Author Affiliations

A Departamento de Química Física e Ingeniería Química I, Universidad de A Coruña, Alejandro de la Sota 1, E-15008 A Coruña, Spain.

B Corresponding author. Email: erob@udc.es

Environmental Chemistry 5(5) 355-365 https://doi.org/10.1071/EN08035
Submitted: 25 June 2008  Accepted: 25 September 2008   Published: 31 October 2008

Environmental context. Large quantities of chromium are discharged into the environment as a result of its widespread use in modern industries, and consequently, chromium could constitute a serious pollution problem. Adsorption onto natural biomass offers real potential as a way of removing chromium from the environment, because such adsorbents contain biopolymers with particular chemical stability and selectivity towards metals. In addition, natural biomass constitutes an eco-friendly and cost-effective alternative to the existing methods. Here, specific interactions between chromium and the biomass are investigated.

Abstract. The chromium(III)-binding capacity of several biomaterials has been described under fixed conditions of pH (4.5) and initial metal concentration (100 mg L–1). Three of these materials (Sargassum muticum, orange peel and bracken fern) have been selected and subjected to different studies. Fourier transform infrared and scanning electron microscopy techniques were used to describe the structure of the biomaterials, supporting the hypothesis of a mechanism of metal complexation via carboxylic groups. Potentiometric titrations revealed the quantity of carboxyl groups present in S. muticum, orange peel and bracken fern: 1.78, 0.49 and 0.67 mmol g–1, respectively. Moreover, a model considering different types of binding sites was used to simulate the process and determine the apparent pK values of the main functionalities. The number of carboxylic groups was clearly correlated with the maximum amount of CrIII binding by the materials. A Langmuir competitive model was used to determine the complexation constants for chromium, log KCr, which are very close (~3), supporting the idea of the implication of essentially one acid functionality. Desorption studies were conducted for different times employing H2SO4 and sodium citrate.

Additional keywords: bracken fern, chromium, isotherms, orange peel, Sargassum muticum.


Acknowledgements

The present work was funded by the projects CTM2006–03142/TECNO (from the Ministerio de Educación y Ciencia of Spain) and PGDIT06TAM00401CT (from Xunta de Galicia). The authors would like to thank Dr I. Bárbara and Dr J. Cremades (University of A Coruña).


References


[1]   J. Kotas , Z. Stasicka , Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000 , 107,  263.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[2]   J. Johnson , L. Schewel , T. E. Graedel , The contemporary anthropogenic chromium cycle. Environ. Sci. Technol. 2006 , 40,  7060.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[3]   A. Agrawal , V. Kumar , B. D. Pandey , Remediation options for the treatment of electroplating and leather tanning effluent containing chromium – a review. Miner. Process. Extr. M. 2006 , 27,  99.
        |  CAS |  open url image1

[4]   D. Mohan , C. U. Pittman , Activated carbons and low-cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006 , 137,  762.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[5]   Wase J., Forster C. F., Biosorbents for Metal Ions 1997 (Taylor and Francis: London).

[6]   Volesky B., Sorption and Biosorption 2003 (BV Sorbex: St Lambert, QC, Canada).

[7]   G. Crini , Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005 , 30,  38.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[8]   P. Lodeiro , R. Herrero , M. E. Sastre de Vicente , Thermodynamic and kinetic aspects on the biosorption of cadmium by low cost materials: a review. Environ. Chem. 2006 , 3,  400.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[9]   L. Jin , R. Bai , Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir 2002 , 18,  9765.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   J. L. Gardea-Torresdey , K. J. Tiemann , V. Armendariz , L. Bess-Oberto , R. R. Chianelli , J. Rios , J. G. Parsons , G. Gamez , Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (oat) biomass. J. Hazard. Mater. 2000 , 80,  175.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   D. Park , Y. S. Yun , D. S. Lee , S. R. Lim , J. M. Park , Column study on Cr(VI)-reduction using the brown seaweed Ecklonia biomass. J. Hazard. Mater. 2006 , 137,  1377.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   D. Park , Y. S. Yun , H. W. Lee , J. M. Park , Advanced kinetic model of the Cr(VI) removal by biomaterials at various pHs and temperatures. Bioresour. Technol. 2008 , 99,  1141.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   Z. Reddad , C. Gérente , Y. Andrès , P. Le Cloirec , Mechanisms of Cr(III) and Cr(VI) removal from aqueous solutions by sugar beet pulp. Environ. Technol. 2003 , 24,  257.
        |  CAS | PubMed |  open url image1

[14]   R. Aravindhan , B. Madhan , J. R. Rao , B. U. Nair , Recovery and reuse of chromium from tannery wastewaters using Turbinaria ornata seaweed. J. Chem. Technol. Biotechnol. 2004 , 79,  1251.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   N. R. Bishnoi , R. Kumar , S. Kumar , S. Rani , Biosorption of Cr(III) from aqueous solution using algal biomass Spirogyra spp. J. Hazard. Mater. 2007 , 145,  142.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   M. T. K. Tsui , K. C. Cheung , N. F. Y. Tam , M. H. Wong , A comparative study on metal sorption by brown seaweed. Chemosphere 2006 , 65,  51.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   V. J. P. Vilar , C. M. S. Botelho , R. A. R. Boaventura , Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium. J. Hazard. Mater. 2007 , 149,  643.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[18]   F. J. Alguacil , M. Alonso , L. J. Lozano , Chromium(III) recovery from waste acid solution by ion-exchange processing using Amberlite IR-120 resin: batch and continuous ion-exchange modelling. Chemosphere 2004 , 57,  789.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   F. Gode , E. Pehlivan , Sorption of Cr(III) onto chelating b-DAEG-sporopollenin and CEP-sporopollenin resins. Bioresour. Technol. 2007 , 98,  904.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   F. Gode , E. Moral , Column study on the adsorption of Cr(III) and Cr(VI) using pumice, Yarikkaya brown coal, Chelex-100 and Lewatit MP 62. Bioresour. Technol. 2008 , 99,  1981.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[21]   S. Kocaoba , G. Akcin , Removal and recovery of chromium and chromium speciation with MINTEQA2. Talanta 2002 , 57,  23.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   D. Mohan , K. P. Singh , V. K. Singh , Trivalent chromium removal from wastewater using low-cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J. Hazard. Mater. 2006 , 135,  280.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   Q. Li , J. Zhai , W. Zhang , M. Wang , J. Zhou , Kinetic studies of adsorption of Pb(II), Cr(III), and Cu(II) from aqueous solution by sawdust and modified peanut husk. J. Hazard. Mater. 2007 , 141,  163.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   S. S. Tahir , R. Naseem , Removal of Cr(III) from tannery wastewater by adsorption onto bentonite clay. Separ. Purif. Tech. 2007 , 53,  312.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   S. Deng , R. Bai , Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms. Water Res. 2004 , 38,  2424.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   A. Zubair , H. N. Bhatti , M. A. Hanif , F. Shafqat , Kinetic and equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by Citrus reticulata waste biomass. Water Air Soil Pollut. 2008 , 191,  305.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   E. Birlik , A. Ersöz , E. Açikkalp , A. Denizli , R. Say , Cr(III)-imprinted polymeric beads: sorption and preconcentration studies. J. Hazard. Mater. 2007 , 140,  110.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[28]   Clesceri L. S., Greenberg A. E., Eaton A. D., in Standard Methods for the Examination of Water and Wastewater 1998, pp. 366–368 (American Public Health Association: Washington, DC).

[29]   C. Rey-Castro , P. Lodeiro , R. Herrero , M. E. Sastre de Vicente , Acid–base properties of brown seaweed biomass considered as a Donnan gel. A model reflecting electrostatic effects and chemical heterogeneity. Environ. Sci. Technol. 2003 , 37,  5159.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[30]   Percival E., McDowell R. H., Chemistry and Enzymology of Marine Algal Polysaccharides 1967 (Academic Press: London).

[31]   A. Katchalsky , N. Shavit , H. Eisenberg , Dissociation of weak polymeric acids and bases. J. Polym. Sci. B 1954 , 13,  69.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   P. Lodeiro , B. Cordero , Z. Grille , R. Herrero , M. E. Sastre de Vicente , Physicochemical studies of cadmium(II) biosorption by the invasive alga in Europe, Sargassum muticum. Biotechnol. Bioeng. 2004 , 88,  237.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   R. P. Dhakal , K. N. Ghimire , K. Inoue , Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy 2005 , 79,  182.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[34]   T. A. Davis , B. Volesky , A. Mucci , A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003 , 37,  4311.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[35]   J. P. Chen , L. Yang , Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis. Langmuir 2006 , 22,  8906.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[36]   P. Lodeiro , B. Cordero , J. L. Barriada , R. Herrero , M. E. Sastre de Vicente , Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour. Technol. 2005 , 96,  1796.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[37]   Puigdomenech I., MEDUSA and HYDRA Software for Chemical Equilibrium Calculations, Version 19 1999 (Royal Institute of Technology: Stockholm, Sweden).

[38]   S. Schiewer , S. B. Patil , Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Bioresour. Technol. 2008 , 99,  1896.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[39]   A. B. Pérez-Marín , V. Meseguer Zapata , J. F. Ortuño , M. Aguilar , J. Sáez , M. Lloréns , Removal of cadmium from aqueous solutions by adsorption onto orange waste. J. Hazard. Mater. 2007 , 139,  122.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[40]   R. Herrero , P. Lodeiro , C. Rey-Castro , T. Vilariño , M. E. Sastre de Vicente , Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata. Water Res. 2005 , 39,  3199.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[41]   P. Lodeiro , C. Rey-Castro , J. L. Barriada , M. E. Sastre de Vicente , R. Herrero , Biosorption of cadmium by the protonated macroalga Sargassum muticum: binding analysis with a non-ideal, competitive, and thermodynamically consistent adsorption (NICCA) model. J. Colloid Interface Sci. 2005 , 289,  352.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[42]   R. Herrero , B. Cordero , P. Lodeiro , C. Rey-Castro , M. E. Sastre de Vicente , Interactions of cadmium(II) and protons with dead biomass of marine algae Fucus sp. Mar. Chem. 2006 , 99,  106.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[43]   B. Cordero , P. Lodeiro , R. Herrero , M. E. Sastre de Vicente , Biosorption of cadmium by Fucus spiralis. Environ. Chem. 2004 , 1,  180.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[44]   T. A. Davis , B. Volesky , R. H. S. F. Vieira , Sargassum seaweed as biosorbent for heavy metals. Water Res. 2000 , 34,  4270.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[45]   S. Schiewer , B. Volesky , Modeling of the proton–metal ion exchange in biosorption. Environ. Sci. Technol. 1995 , 29,  3049.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[46]   S. Schiewer , M. H. Wong , Metal binding stoichiometry and isotherm choice in biosorption. Environ. Sci. Technol. 1999 , 33,  3821.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[47]   P. Lodeiro , R. Herrero , M. E. Sastre de Vicente , Batch desorption studies and multiple sorption–regeneration cycles in a fixed-bed column for Cd(II) elimination by protonated Sargassum muticum. J. Hazard. Mater. 2006 , 127,  1649.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   P. Lodeiro , J. L. Barriada , R. Herrero , M. E. Sastre de Vicente , The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies. Environ. Pollut. 2006 , 142,  264.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[49]   M. F. Sawalha , J. R. Peralta-Videa , G. B. Saupe , K. M. Dokken , J. L. Gardea-Torresdey , Using FTIR to corroborate the identity of functional groups involved in the binding of Cd and Cr to saltbush (Atriplex canescens) biomass. Chemosphere 2007 , 66,  1424.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[50]   S. Deng , Y. P. Ting , Fungal biomass with grafted poly(acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption. Langmuir 2005 , 21,  5940.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[51]   P. X. Sheng , Y. P. Ting , J. P. Chen , L. Hong , Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 2004 , 275,  131.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1