Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

FLUXY: a simple code for computing steady-state metal fluxes at consuming (bio)interfaces, in natural waters

Zeshi Zhang A , Jacques Buffle A B , Konstantin Startchev A and Davide Alemani A
+ Author Affiliations
- Author Affiliations

A Analytical and Biophysical Environmental Chemistry (CABE), University of Geneva, Sciences II, 30 quai E. Ansermet, 1211 Geneva 4, Switzerland.

B Corresponding author. Email: jacques.buffle@cabe.unige.ch

Environmental Chemistry 5(3) 204-217 https://doi.org/10.1071/EN07095
Submitted: 20 December 2007  Accepted: 7 April 2008   Published: 19 June 2008

Environmental context. Until now there was no user-friendly code for metal flux computations in natural mixtures of aquatic complexants, which are however essential for prediction of metal bioavailability. The present paper describes the capabilities and limitations of one of the only two such codes presently available, called FLUXY. The results of FLUXY are compared with those of another code, and it is shown that it enables quick computation and is applicable to natural ligands under many environmental conditions.

Abstract. The computation of metal fluxes at consuming interfaces like microorganisms or bioanalogical sensors is of great importance in ecotoxicology. The present paper describes the application of a simple code, FLUXY, for the computation of steady-state metal fluxes in the presence of a very large number of complexes, with broadly varying values of equilibrium constants, rate constants and diffusion coefficients. This code includes two major limiting assumptions, namely, (i) the existence of excess of ligand (L) compared with metal (M), and (ii) the fact that in a series of successive MLn complexes, the reaction EN07095_EI03.gif is the rate-limiting step in flux computation. The domains of rate constants for which these assumptions are valid are tested systematically, and the corresponding errors are evaluated by comparison with the exact results given by another code: MHEDYN. FLUXY is then applied and compared with MHEDYN for case studies typical of aquatic systems, namely (i) a culture medium containing simple ligands; (ii) solutions of fulvic compounds including a broad distribution of complex stability and rate constants; and (iii) suspensions of aggregates with a broad size distribution. It is shown that FLUXY gives good results for cases (i) and (iii). Application to case (ii) (fulvic compounds) is also feasible under conditions that are clearly described. Altogether, FLUXY and MHEDYN are complementary. In particular, FLUXY only computes steady-state fluxes and requires the fulfilment of a few conditions, but when these are met, computations require much less computer time than MHEDYN.

Additional keywords: aggregate complexes, calculations, dynamic speciation, fulvic complexes, ligand excess, ligand mixtures, successive metal complexes.


Acknowledgements

The present work was initiated during sabbatical leave of J. Buffle in the Centre for Advanced Analytical Chemistry, at CSIRO. J. B. thanks G. Batley and S. Apte for stimulating discussions. The work was partly supported by the EU project ECODIS (No. 518043).


References


[1]   Buffle J., Complexation Reactions in Aquatic Systems 1988 (Ellis Horwood: Chichester, UK).

[2]   J. Buffle , M.-L. Tercier-Waeber , Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements. Trend. Anal. Chem. 2005 , 24,  172.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   H. P. Van Leeuwen , R. M. Town , J. Buffle , R. Cleven , W. Davison , J. Puy , W. H. van Riemsdijl , L. Sigg , Dynamic speciation analysis and bioavailability of metals in aquatic systems Environ. Sci. Technol. 2005 , 39,  8545.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[4]   J. Buffle , Z. Zhang , K. Startchev , Metal flux and dynamic speciation at (bio)interfaces. Part I: Critical evaluation and compilation of physico-chemical parameters for complexes with simple ligands and fulvic/humic substances. Environ. Sci. Technol. 2007 , 41,  7609.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[5]   Z. Zhang , J. Buffle , D. Alemani , Metal flux and dynamic speciation at (bio)interfaces. Part II: Evaluation and compilation of physico-chemical parameters for complexes with particles and aggregates. Environ. Sci. Technol. 2007 , 41,  7621.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[6]   Campbell P. G. C., Interactions between trace metals and aquatic organisms: a critique of the free ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems. (Eds A. Tessier, D. Turner) 1995, Vol. 3, Ch. 2 (Wiley: Chichester, UK).

[7]   C. Fortin , P. G. C. Campbell , Silver uptake by the green alga Chlamydomonas rheinhardtii in relation to speciation: the role of chloride. Environ. Toxicol. Chem. 2000 , 19,  2769.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   Wilkinson K. J., Buffle J., Critical evaluation of physicochemical parameters and processes for modelling the biological uptake of trace metals in environmental (aquatic) systems, in Physico-Chemical Kinetics and Transport at Chemical–Biological Surfaces. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Eds H. P. Van Leeuwen, W. Koester) 2004, Vol. 9, Ch. 10 (Wiley: Chichester, UK).

[9]   Heyrovsky J., Kuta J., Principles of Polarography 1966 (Academic Press: New York).

[10]   J. Koutecky , J. Koryta , The general theory of polarographic kinetic currents. Electrochim. Acta 1961 , 3,  318.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   Z. Zhang , J. Buffle , H. P. van Leeuwen , Roles of dynamic metal speciation and membrane permeability in metal flux through lipophilic membranes: general theory and experimental validation with non-labile complexes. Langmuir 2007 , 23,  5216.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[12]   J. Salvador , J. Puy , J. Cecilia , J. Galceran , Lability of complexes in steady-state finite planar diffusion. J. Electroanal. Chem. 2006 , 588,  303.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   J. Salvador , J. L. Garcés , E. Companys , J. Cecilia , J. Galceran , J. Puy , R. M. Town , Ligand mixture effects in metal complex lability. J. Phys. Chem. A 2007 , 111,  4304.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[14]   J. Galceran , J. Puy , J. Salvador , J. Cecilia , F. Mas , J. L. Garces , Lability and mobility effects on mixtures of ligands under steady-state conditions. Phys. Chem. Chem. Phys. 2003 , 5,  5091.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   J. Salvador , J. L. Garces , J. Galceran , J. Puy , Lability of a mixture of metal complexes under steady-state planar diffusion in a finite domain. J. Phys. Chem. B 2006 , 110,  13661.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[16]   J. Puy , J. Cecilia , J. Galceran , R. M. Town , H. P. van Leeuwen , Voltammetric lability of multiligand complexes: the case of ML2. J. Electroanal. Chem. 2004 , 571,  121.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   J. Salvador , J. Puy , J. Galceran , J. Cecilia , R. M. Town , H. P. van Leeuwen , Lability criteria for successive metal complexes in steady-state planar diffusion. J. Phys. Chem. B 2006 , 110,  891.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[18]   J. Buffle , K. Startchev , J. Galceran , Computing steady-state metal flux at microorganism and bioanalogical sensor interfaces in multiligand systems. A reaction layer approximation and its comparison with the rigorous solution. Phys. Chem. Chem. Phys. 2007 , 9,  2844.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[19]   D. Alemani , J. Buffle , Z. Zhang , J. Galceran , B. Chopard , Metal flux and dynamic speciation at (bio)interfaces. Part III: MHEDYN, a general code for metal flux computation; application to simple and fulvic complexants. Environ. Sci. Technol. 2008 , 42,  2021.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[20]   D. Alemani , J. Buffle , Z. Zhang , J. Galceran , B. Chopard , Metal flux and dynamic speciation at (bio)interfaces. Part IV: MHEDYN, a general code for metal flux computation; application to particulate complexants and their mixtures with the other natural ligands. Environ. Sci. Technol. 2008 , 42,  2028.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[21]   F. M. M. Morel , J. G. Ruter , Aquil: a chemically defined phytoplankton culture medium for trace metal studies. J. Phycol. 1979 , 15,  135.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   D. Alemani , B. Chopard , J. Galceran , J. Buffle , LBGK method coupled to time splitting technique for solving reaction–diffusion processes in complex systems. Phys. Chem. Chem. Phys. 2005 , 7,  3331.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[23]   D. Alemani , B. Chopard , J. Galceran , J. Buffle , Two grid refinement methods in the lattice Boltzmann framework for reaction–diffusion processes in complex systems. Phys. Chem. Chem. Phys. 2006 , 8,  4119.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[24]   Wilkins R. C., Kinetics and Mechanisms of Reactions of Transition Metal Complexes, 2nd edn 1991 (Verlagsgesellschaft mbH: New York).

[25]   Martell A. E., Smith R. M., NIST Critically Selected Stability Constants of Metal Complexes, Version 7, NIST Standard Reference Data 2003 (Gaithersburg, MD).

[26]   Xue H., Sigg L., A review of competitive ligand-exchange/voltammetric methods for speciation of trace metals in freshwater, in Environmental Electrochemistry; Analyses of Trace Element Biogeochemistry (Eds T. F. Rozan, M. Taillefert) 2002, Vol. 811, pp. 336–370 (American Chemical Society: Washington, DC).

[27]   K. W. Bruland , Complexation of zinc by natural organic ligands in the central North Pacific. Limnol. Oceanogr. 1989 , 34,  269.
         open url image1

[28]   Gustafsson J. P., Visual MINTEQ, Ver. 2.52, KTH, Dept of Land and Water Resources Engineering 2007 (Stockholm, Sweden).

[29]   J. R. Lead , K. W. Wilkinson , E. Balnois , B. J. Cutak , C. R. Larive , S. Assemi , R. Beckett , Diffusion coefficients and polydispersities of Suwanee River fulvic acids: comparison of fluorescence correlation spectroscopy, pulse-field gradient nuclear magnetic resonance, and flow-field-flow fractionation. Environ. Sci. Technol. 2000 , 34,  3508.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   J. Buffle , R. S. Altmann , M. Filella , A. Tessier , Complexation by natural heterogeneous compounds: site occupation distribution functions, a normalized description of metal complexation. Geochim. Cosmochim. Acta 1990 , 54,  1535.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   R. S. Altmann , J. Buffle , The use of differential equilibrium functions for interpretation of metal binding in complex ligand systems: its relation to site occupation and site affinity distributions. Geochim. Cosmochim. Acta 1988 , 52,  1505.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   J.-P. Pinheiro , A. M. Mota , M. L. Simoes-Gonçalves , Complexation study of humic acids with cadmium(II) and lead(II). Anal. Chim. Acta 1994 , 284,  525.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   D. Kinniburgh , W. H. van Riemsdijk , L. K. Koopal , M. Borkovec , M. F. Benedetti , M. J. Avena , Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf. A Physicochem. Eng. Asp. 1999 , 151,  147.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   J. Buffle , R. S. Altmann , M. Filella , The effect of physico-chemical heterogeneity of natural complexants. Part II. The buffering action of their background sites. Anal. Chim. Acta 1990 , 232,  225.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   R. Sips , The structure of a catalyst surface II. J. Chem. Phys. 1950 , 18,  1024.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   Doucet F. J., Lead J. R., Santschi P. H., Colloid–trace element interactions in aquatic systems, in Environmental Colloids and Particles; Behaviour, Separation and Characterization. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Eds K. J. Wilkinson, J.R. Lead) 2007, Vol. 10, Ch. 3 (Wiley: Chichester, UK).

[37]   Lerman A., Geochemical Processes 1979 (Wiley Interscience: New York).

[38]   Filella M., Colloidal properties of submicron colloids in natural waters, in Environmental Colloids and Particles. Behaviour, Separation and Characterization. IUPAC Series in Analytical and Physical Chemistry of Environmental Systems (Eds K. J. Wilkinson, J. Lead) 2006, Vol. 10, Ch. 2 (Wiley: Chichester, UK).

[39]   J. P. Pinheiro , M. Minor , H. P. van Leeuwen , Metal speciation dynamics in colloidal ligand dispersions. Langmuir 2005 , 21,  8635.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1