Evaluation of affinity constants of Cu, Cd, Ca and H for active soil surfaces for a solid phase-controlled soil ligand model
Julien Rachou A and Sébastien Sauvé A BA Department of Chemistry, Université de Montréal, PO Box 6128 Downtown, Montréal, QC, H3C 3J7, Canada.
B Corresponding author. Emial: sebastien.sauve@umontreal.ca
Environmental Chemistry 5(2) 150-160 https://doi.org/10.1071/EN07093
Submitted: 8 December 2007 Accepted: 4 March 2008 Published: 17 April 2008
Environmental context. The speciation of metals in soils is controlled by the equilibrium between the solid and aqueous phases and by several parameters such as pH and total metal concentrations. The integration of affinity constants between several cations and active soil surfaces of different soils in the chemical equilibrium modelling software MINEQL+ allows a good evaluation of the chemical speciation of the metals.
Abstract. A new approach, derived from the concept of the biotic ligand model, was used for the determination of the affinity constants of Ca, Cu, Cd and H to the active surfaces of different kinds of soils. This approach allowed us to obtain consistent data and to integrate these values in the chemical equilibrium modelling software MINEQL+ and eventually into a solid phase-controlled soil ligand model. This could then very easily be transformed into a terrestrial biotic ligand model by adding constants for biological components. We obtained the chemical speciation of the metals of interest by integrating the initial characteristics of the soil (pH; cation exchange capacity, CEC; total metal concentrations in soil extracts; ionic strength; and CO2 pressure). Comparison of the predicted and measured values of free Cu2+ is excellent using soil-specific affinity constants as well as average values. The average affinity constants between the active soil surfaces (S) and the target cations are log KCa–S = –0.84 (±0.01), log KCu–S = 5.3 (±0.1), log KCd–S = 4.4 (±0.2) and log KH–S = 4.1 (±0.2). External soils have been used to validate the conceptual model and the results show a very good correlation between the predicted and the measured free Cu (pCu) except for an acidic soil (pH < 5.2), highlighting the importance of integrating Al into the model.
Additional keywords: contaminated soils, soil chemistry modelling, terrestrial biotic ligand model, TBLM.
Acknowledgements
The authors gratefully acknowledge the support of the Natural Sciences and Engineering Research Council Metals in the Human Environment (NSERC-MITHE) research network. A complete list of sponsors is available at www.mithe-rn.org.
[1]
A. Y. Renoux ,
S. Rocheleau ,
M. Sarrazin ,
G. I. Sunahara ,
J. F. Blais ,
Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms.
Environ. Pollut. 2007
, 145, 41.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[2]
F. Degryse ,
E. Smolders ,
R. Merckx ,
Labile Cd complexes increase Cd availability to plants.
Environ. Sci. Technol. 2006
, 40, 830.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[3]
J. I. Lorenzo ,
O. Nieto ,
R. Beiras ,
Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater.
Aquat. Toxicol. 2002
, 58, 27.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[4]
G. J. Nierop ,
B. Jansen ,
J. A. Vrugt ,
J. M. Verstraten ,
Copper complexation by dissolved organic matter and uncertainty assessment of their stability constants.
Chemosphere 2002
, 49, 1191.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[5]
H. Ernstberger ,
W. Davison ,
H. Zhang ,
A. Tye ,
S. Young ,
Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS.
Environ. Sci. Technol. 2002
, 36, 349.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[6]
H. Ernstberger ,
H. Zhang ,
A. Tye ,
S. Young ,
W. Davison ,
Desorption kinetics of Cd, Zn, and Ni measured in soils by DGT.
Environ. Sci. Technol. 2005
, 39, 1591.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[7]
F. Degryse ,
E. Smolders ,
I. Oliver ,
H. Zhang ,
Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.
Environ. Sci. Technol. 2003
, 37, 3958.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[8]
J. Rachou ,
S. Sauvé ,
W. H. Hendershot ,
Effects of pH on fluxes of cadmium in soils measured by using diffusive gradients in thin films.
Commun. Soil Sci. Plant Anal. 2004
, 35, 2655.
| Crossref | GoogleScholarGoogle Scholar |
[9]
J. Rachou ,
W. H. Hendershot ,
S. Sauvé ,
Diffusive gradients in thin films (DGT) – induced fluxes of cadmium in soils: effects of organic matter.
Commun. Soil Sci. Plant Anal. 2007
, 38, 1619.
| Crossref | GoogleScholarGoogle Scholar |
[10]
H. Zhang ,
W. Davison ,
A. M. Tye ,
N. M. J. Crout ,
S. D. Young ,
Kinetics of zinc and cadmium release in freshly contaminated soils.
Environ. Toxicol. Chem. 2006
, 25, 664.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[11]
W. Li ,
H. Zhao ,
P. R. Teasdale ,
R. John ,
F. Wang ,
Metal speciation measurement by diffusive gradients in thin films technique with different binding phases.
Anal. Chim. Acta 2005
, 533, 193.
| Crossref | GoogleScholarGoogle Scholar |
[12]
A. Avdeef ,
J. Zabronsky ,
H. H. Stuting ,
Calibration of copper ion selective electrode response to Pcu-19.
Anal. Chem. 1983
, 55, 298.
| Crossref | GoogleScholarGoogle Scholar |
[13]
S. E. Cabaniss ,
M. S. Shuman ,
Combined ion selective electrode and fluorescence quenching detection for copper–dissolved organic matter titrations.
Anal. Chem. 1986
, 58, 398.
| Crossref | GoogleScholarGoogle Scholar |
[14]
J. Gulens ,
Assessment of the research on the preparation, response and application of solid-state copper ion-selective electrodes.
Ion-Sel. Electrode R. 1987
, 9, 127.
[15]
S. Sauvé ,
M. B. McBride ,
W. H. Hendershot ,
Ion-selective electrode measurements of copper(II) activity in contaminated soils.
Arch. Environ. Contam. Toxicol. 1995
, 29, 373.
| Crossref | GoogleScholarGoogle Scholar |
[16]
S. Sauvé ,
M. B. McBride ,
W. A. Norvell ,
W. H. Hendershot ,
Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter.
Water Air Soil Pollut. 1997
, 100, 133.
| Crossref | GoogleScholarGoogle Scholar |
[17]
E. M. Logan ,
I. D. Pulford ,
G. T. Cook ,
A. B. MacKenzie ,
Complexation of Cu2+ and Pb2+ by peat and humic acid.
Eur. J. Soil Sci. 1997
, 48, 685.
| Crossref | GoogleScholarGoogle Scholar |
[18]
A. T. Lombardi ,
T. M. R. Hidalgo ,
A. A. H. Vieira ,
Copper complexing properties of dissolved organic materials exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae).
Chemosphere 2005
, 60, 453.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[19]
J. Rachou ,
C. Gagnon ,
S. Sauvé ,
Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices.
Environ. Chem. 2007
, 4, 90.
| Crossref | GoogleScholarGoogle Scholar |
[20]
E. P. Achterberg ,
C. Braungardt ,
Stripping voltammetry for the determination of trace metal speciation and in-situ measurements of trace metal distributions in marine waters.
Anal. Chim. Acta 1999
, 400, 381.
| Crossref | GoogleScholarGoogle Scholar |
[21]
H. P. van Leeuwen ,
S. Jansen ,
Dynamic aspects of metal speciation by competitive ligand exchange-adsorptive stripping voltammetry (CLE-AdSV).
J. Electroanal. Chem. 2005
, 579, 337.
| Crossref | GoogleScholarGoogle Scholar |
[22]
K. N. Buck ,
K. W. Bruland ,
Copper speciation in San Francisco Bay: a novel approach using multiple analytical windows.
Mar. Chem. 2005
, 96, 185.
| Crossref | GoogleScholarGoogle Scholar |
[23]
S. Meylan ,
N. Odzak ,
R. Behra ,
L. Sigg ,
Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models.
Anal. Chim. Acta 2004
, 510, 91.
| Crossref | GoogleScholarGoogle Scholar |
[24]
N. Serrano ,
J. M. Diaz-Cruz ,
C. Arino ,
M. Esteban ,
Comparison of constant-current stripping chronopotentiometry and anodic stripping voltammetry in metal speciation studies using mercury drop and film electrodes.
J. Electroanal. Chem. 2003
, 560, 105.
| Crossref | GoogleScholarGoogle Scholar |
[25]
C. R. Janssen ,
D. G. Heijerick ,
K. A. C. De Schamphelaere ,
H. E. Allen ,
Environmental risk assessment of metals: tools for incorporating bioavailability.
Environ. Int. 2003
, 28, 793.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[26]
[27]
N. Semerci ,
F. Cecen ,
Importance of cadmium speciation in nitrification inhibition.
J. Hazard. Mater. 2007
, 147, 503.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[28]
J. W. Guthrie ,
N. M. Hassan ,
M. S. A. Salam ,
I. I. Fasfous ,
C. A. Murimboh ,
C. L. Murimboh ,
C. L. Chakrabarti ,
D. C. Grégoire ,
Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI.
Anal. Chim. Acta 2005
, 528, 205.
| Crossref | GoogleScholarGoogle Scholar |
[29]
B. Cloutier-Hurteau ,
S. Sauvé ,
F. Courchesne ,
Comparing WHAM 6 and MINEQL+ 4.5 for the chemical speciation of Cu2+ in the rhizosphere of forest soils.
Environ. Sci. Technol. 2007
, 41, 8104.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[30]
C. A. M. van Gestel ,
G. Hoogerwerf ,
Influence of soil pH on the toxicity of aluminium for Eisenia andrei (Oligochaeta: Lumbricidae) in an artificial soil substrate.
Pedobiologia 2001
, 45, 385.
| Crossref | GoogleScholarGoogle Scholar |
[31]
C. Rensing ,
R. M. Maier ,
Issues underlying use of biosensors to measure metal bioavailability.
Ecotoxicol. Environ. Saf. 2003
, 56, 140.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[32]
D. J. Walker ,
R. Clemente ,
M. P. Bernal ,
Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste.
Chemosphere 2004
, 57, 215.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[33]
J. D. MacDonald ,
W. H. Hendershot ,
Modelling trace metal partitioning in forest floors of northern soils near metal smelters.
Environ. Pollut. 2006
, 143, 228.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[34]
Y. Ge ,
D. MacDonald ,
S. Sauvé ,
W. Hendershot ,
Modeling of Cd and Pb speciation in soil solutions by WinHumicV and NICA-Donnan model.
Environ. Model. Softw. 2005
, 20, 353.
| Crossref | GoogleScholarGoogle Scholar |
[35]
S. Goldberg ,
S. J. Traina ,
Chemical modeling of anion competition on oxides using the constant capacitance model mixed-ligand approach.
Soil Sci. Soc. Am. J. 1987
, 51, 929.
[36]
X. Wen ,
Q. Du ,
H. Tang ,
Surface complexation model for the heavy metal adsorption on natural sediment.
Environ. Sci. Technol. 1998
, 32, 870.
| Crossref | GoogleScholarGoogle Scholar |
[37]
J. Choi ,
Geochemical modeling of cadmium sorption to soil as a function of soil properties.
Chemosphere 2006
, 63, 1824.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[38]
J. P. Gustafsson ,
Modeling the acid-base properties and metal complexation of humic substances with the Stockholm humic model.
J. Colloid Interface Sci. 2001
, 244, 102.
| Crossref | GoogleScholarGoogle Scholar |
[39]
M. F. Benedetti ,
W. H. Van Riemsdijk ,
L. K. Koopal ,
Humic substances considered as a heterogeneous Donnan gel phase.
Environ. Sci. Technol. 1996
, 30, 1805.
| Crossref | GoogleScholarGoogle Scholar |
[40]
P. R. Paquin ,
R. C. Santore ,
K. B. Wu ,
C. D. Kavvadas ,
D. M. Di Toro ,
The biotic ligand model: a model of the acute toxicity of metals to aquatic life.
Environ. Sci. Policy 2000
, 3, 175.
| Crossref | GoogleScholarGoogle Scholar |
[41]
W. R. Arnold ,
R. C. Santore ,
J. S. Cotsifas ,
Predicting copper toxicity in estuarine and marine waters using the biotic ligand model.
Mar. Pollut. Bull. 2005
, 50, 1634.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[42]
P. R. Paquin ,
J. W. Gorsuch ,
S. Apte ,
G. E. Batley ,
K. C. Bowles ,
P. G. C. Campbell ,
C. G. Delos ,
D. M. Di Toro ,
R. L. Dwyer ,
F. Galvez ,
R. W. Gensemer ,
G. G. Goss ,
C. Hogstrand ,
C. R. Janssen ,
J. C. McGeer ,
R. B. Naddy ,
R. C. Playle ,
R. C. Santore ,
U. Schneider ,
W. A. Stubblefield ,
C. M. Wood ,
K. B. Wu ,
The biotic ligand model: a historical overview.
Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2002
, 133, 3.
| Crossref | GoogleScholarGoogle Scholar |
[43]
P. M. C. Antunes ,
E. J. Berkelaar ,
D. Boyle ,
B. A. Hale ,
W. Hendershot ,
A. Voigt ,
The biotic ligand model for plants and metals: technical challenges for field application.
Environ. Toxicol. Chem. 2006
, 25, 875.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[44]
K. A. C. De Schamphelaere ,
C. R. Janssen ,
A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH.
Environ. Sci. Technol. 2002
, 36, 48.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[45]
S. Thakali ,
H. E. Allen ,
D. M. Di Toro ,
A. A. Ponizovsky ,
C. P. Rooney ,
F. J. Zhao ,
S. P. McGrath ,
A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils.
Environ. Sci. Technol. 2006
, 40, 7085.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[46]
S. Thakali ,
H. E. Allen ,
D. M. Di Toro ,
A. A. Ponizovsky ,
C. P. Rooney ,
F. J. Zhao ,
S. P. McGrath ,
P. Criel ,
H. Van Eeckhout ,
C. R. Janssen ,
K. Oorts ,
E. Smolders ,
Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil.
Environ. Sci. Technol. 2006
, 40, 7094.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[47]
M. Koster ,
A. de Groot ,
M. Vijver ,
W. Peijnenburg ,
Copper in the terrestrial environment: verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils.
Soil Biol. Biochem. 2006
, 38, 1788.
| Crossref | GoogleScholarGoogle Scholar |
[48]
P. M. C. Antunes ,
B. A. Hale ,
A. C. Ryan ,
Toxicity versus accumulation for barley plants exposed to copper in the presence of metal buffers: progress towards development of a terrestrial biotic ligand model.
Environ. Toxicol. Chem. 2007
, 26, 2282.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[49]
N. T. T. M. Steenbergen ,
F. Iaccino ,
M. de Winkel ,
L. Reijnders ,
W. J. G. M. Peijnenburg ,
Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa.
Environ. Sci. Technol. 2005
, 39, 5694.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[50]
D. G. Heijerick ,
K. A. C. De Schamphelaere ,
C. R. Janssen ,
Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations.
Comp. Biochem. Phys. C 2002
, 133, 207.
[51]
K. A. C. De Schamphelaere ,
D. G. Heijerick ,
C. R. Janssen ,
Refinement and field validation of a Biotic Ligand Model predicting acute copper toxicity to Daphnia magna.
Comp. Biochem. Phys. C 2002
, 133, 243.
[52]
R. C. Santore ,
R. Mathew ,
P. R. Paquin ,
D. Di Toro ,
Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna.
Comp. Biochem. Phys. C 2002
, 133, 271.
[53]
W. D. Schecher ,
D. C. McAvoy ,
MINEQL+: a software environment for chemical equilibrium modeling.
Comput. Environ. Urban Syst. 1992
, 16, 65.
| Crossref | GoogleScholarGoogle Scholar |
[54]
[55]
L. Weng ,
E. J. M. Temminghoff ,
W. H. Van Riemsdijk ,
Contribution of individual sorbents to the control of heavy metal activity in sandy soil.
Environ. Sci. Technol. 2001
, 35, 4436.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[56]
L. A. Miller ,
K. W. Bruland ,
Competitive equilibration techniques for determining transition metal speciation in natural waters: evaluation using model data.
Anal. Chim. Acta 1997
, 343, 161.
| Crossref | GoogleScholarGoogle Scholar |
[57]
S. Sauvé ,
W. A. Norvell ,
M. McBride ,
W. Hendershot ,
Speciation and complexation of cadmium in extracted soil solutions.
Environ. Sci. Technol. 2000
, 34, 291.
| Crossref | GoogleScholarGoogle Scholar |
[58]
[59]
[60]
[61]
[62]
Y. Ge ,
P. Murray ,
W. H. Hendershot ,
Trace metal speciation and bioavailability in urban soils.
Environ. Pollut. 2000
, 107, 137.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[63]
S. Sauvé ,
A. Dumestre ,
M. McBride ,
W. Hendershot ,
Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+.
Environ. Toxicol. Chem. 1998
, 17, 1481.
| Crossref | GoogleScholarGoogle Scholar |
[64]
R. C. Playle ,
Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results.
Aquat. Toxicol. 2004
, 67, 359.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[65]
L. Weng ,
E. J. M. Temminghoff ,
S. Lofts ,
E. Tipping ,
W. H. Van Riemsdijk ,
Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil.
Environ. Sci. Technol. 2002
, 36, 4804.
| Crossref | GoogleScholarGoogle Scholar | PubMed |