Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Fitzroy River Basin, Queensland, Australia. IV. Identification of flood sediment sources in the Fitzroy River

G. B. Douglas A F , P. W. Ford B , M. R. Palmer C , R. M. Noble D , R. J. Packett D and E. S. Krull E
+ Author Affiliations
- Author Affiliations

A CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No. 5, Wembley, WA 6913, Australia.

B CSIRO Land and Water, Black Mountain Laboratories, GPO Box 1666, Canberra, ACT 2601, Australia.

C CSIRO Mathematical and Information Sciences, Centre for Environment and Life Sciences, Private Bag No. 5, Wembley, WA 6913, Australia.

D Queensland Department of Natural Resources and Water, Rockhampton, PO Box 1762, Rockhampton, Qld 4700, Australia.

E CSIRO Land and Water, PMB 2, Glen Osmond, SA 5064, Australia.

F Corresponding author. Email: grant.douglas@csiro.au

Environmental Chemistry 5(3) 243-257 https://doi.org/10.1071/EN07091
Submitted: 4 December 2007  Accepted: 9 May 2008   Published: 19 June 2008

Environmental context. During flood events, the Fitzroy River is a major contributor to the loads of suspended sediment and nutrients to the southern Great Barrier Reef. The present geochemical and modelling study provides for the first time a quantitative estimate of the temporal variation in sediment sources over an entire flood hydrograph. Basaltic soils are substantially enriched in this flood event relative to their catchment abundance.

Abstract. Suspended sediment collected over a complete flood hydrograph in the Fitzroy River provided an insight into the origin and transport of sediment in this system. Strong temporal trends are evident in the proportions of catchment soil types estimated using a Bayesian mixing model in the fine (<10 μm) fraction of the suspended sediment. These temporal trends were also manifested in changes in mineralogy, major and trace element and Nd–Sr and C–N isotope geochemistry. Tertiary Basaltic soils were the most abundant catchment soil type transported in the flood event studied here, constituting 39% of the <10-μm sediment fraction, but varied between an estimated 20 and 50% of the suspended solids over the course of the flood event. The techniques used here allow quantification and comparison between flow and suspended sediment sources and are widely applicable to other river systems.

Additional keywords: Bayesian model, geochemistry, suspended sediment.


Acknowledgements

We acknowledge helpful discussions and the provision of data by hydrologists from the Queensland Department of Natural Resources and Water – Rockhampton Branch, the FMBC for sampling access, and our colleagues in the Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management (CRC CZEWM). The CRC CZEWM provided partial financial support for the present work. Two independent reviewers of the manuscript are acknowledged for their insight and assistance.


References


[1]   G. B. Douglas , P. W. Ford , M. R. Palmer , R. M. Noble , R. J. Packett , Fitzroy River Basin, Queensland, Australia. I: Identification of sediment sources in impoundments and flood events. Environ. Chem. 2006 , 3,  364.
        | Crossref | GoogleScholarGoogle Scholar |  [Verified June 2008]

[8]   Kuhnen M., Douglas G. B., Radke L., Brooke B., Palmer M. R., Hancock G., Pietsch T., Trefry M. G., Delineation of sediment sources to a coastal wetland in the Great Barrier Reef catchment: interactions between climate and land clearing since European arrival. Technical Report No 57 2006 (CRC for Coastal Zone, Estuary and Waterway Management: Indooroopilly, Qld).

[9]   Webster B., Marooned, Rockhampton’s Great Flood of 1919 2003 (CRC for Coastal Zone, Estuary and Waterway Management: Brisbane, Qld).

[10]   BOM (Bureau of Meteorology), Water Resources Overview Queensland Surface Water Management Area: Fitzroy River (Qld) 2004. Available at http://www.anra.gov.au/topics/water/overview/qld/swma-fitzroy-river-qld.html [Verified June 2008]

[11]   Nix H., The Brigalow, in Australian Environmental History (Ed. S. Dovers) 1994, pp. 198–233 (Oxford University Press: Oxford).

[12]   Horn A., Joo M., Poplawski M., Queensland riverine sediment transport rates: a progress report. Water Quality Group report 2/98 1998 (Department of Natural Resources: Brisbane, Qld).

[13]   Kelly J. N., Wong W. T., Sediment transport in the Fitzroy River during flood events, in Proc. First Aust. Stream Management Conf.: Stream Management ’96, 19–23 February (Eds I. Rutherfurd, M. Walker) 1996 (CRC for Catchment Hydrology: Monash University, Vic.).

[14]   Dougall C., Packett R.J., Carroll C., Application of the SedNet model in partnership with the Fitzroy Basin community, Modsim 05, in Proc. MODSIM 2005 International Congress on Modelling and Simulation, Melbourne, 12–15 December 2005 (Eds A. Zerger, R. M. Argent), pp. 170–176 (Modelling and Simulation Society of Australia and New Zealand: Canberra). Available at http://www.mssanz.org.au/modsim05/papers/dougall.pdf [Verified June 2008]

[15]   Kuhnen M., Constraining the source areas and nutrient transport of sediments entering the Fitzroy Estuary since European arrival 2004, B.Sc.(Hons) thesis, Department of Earth and Marine Sciences, Australian National University, Canberra.

[16]   H. W. Nesbitt , G. M. Young , Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984 , 48,  1523.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   H. W. Nesbitt , G. M. Young , Formation and diagenesis of weathering profiles. J. Geol. 1989 , 97,  129–147.
         open url image1

[18]   S. M. McLennan , S. R. Taylor , M. T. McCulloch , J. B. Maynard , Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta 1990 , 54,  2015.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   H. D. Hensel , M. T. McCulloch , B. W. Chappell , The New England Batholith: constraints on its derivation from Nd and Sr isotopic studies of granitoids and country rocks. Geochim. Cosmochim. Acta 1985 , 49,  369.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   G. B. Douglas , C. M. Gray , B. T. Hart , R. Beckett , A strontium isotope investigation of the origin of suspended particulate matter (SPM) in the Murray–Darling River system, Australia. Geochim. Cosmochim. Acta 1995 , 59,  3799.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   C. E. Martin , M. T. McCulloch , Nd–Sr isotopic and trace element geochemistry of river sediments and soils in a fertilized catchment, New South Wales, Australia. Geochim. Cosmochim. Acta 1999 , 63,  287.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   P. W. Ford , P. Tillman , B. Robson , I. T. Webster , Organic carbon deliveries and their flow-weighted dynamics in the Fitzroy estuary. Mar. Pollut. Bull. 2005 , 51,  119.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[23]   Krull E. S., Baldock J. A., McGowan J., Douglas G. B., McClure S., Radke L., Stable carbon isotopic and 13C-NMR analysis of Fitzroy Estuary sediments, in Joint Congress of 9th Australasian Environmental and Isotope conference and 2nd Australasian Hydrogeology Research conference, Adelaide, 13–15 December 2006 (The Centre for Groundwater Studies, Adelaide, SA).

[24]   G. B. Douglas , M. R. Palmer , G. Caitcheon , P. Orr , Identification of sediment sources to Lake Wivenhoe, south-east Queensland, Australia. Mar. Freshwater Res. 2007 b, 58,  793.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   A. C. Redfield , The biological control of chemical factors in the environment. Am. Sci. 1958 , 46,  205.
         open url image1

[26]   Norrish K., Chappell B., in Physical Methods in Determinative Mineralogy 1977, p. 201 (Academic Press: London).

[27]   Hart M., Analysis for total Fe, Cr, V and Ti in varying matrix geological samples by XRF, using pressed powder samples, in Standards in X-ray analysis, Fifth State Conf., Perth, WA 1989, pp. 117–129 (Australian X-Ray Analytical Association (WA Branch): Perth).

[28]   G. E. Gordon , K. Randle , G. G. Goles , J. B. Corliss , M. H. Beeson , S. S. Oxley , Instrumental activation of standard rocks with high-resolution gamma-ray detectors. Geochim. Cosmochim. Acta 1968 , 32,  369.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   J. Hertogen , R. Gijbels , Instrumental neutron activation analysis of rocks with a low-energy photon detector. Anal. Chim. Acta 1971 , 56,  61.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   J. G. Crock , F. E. Lichte , T. R. Wildeman , The group separation of the rare-earth elements and yttrium from geologic materials by cation-exchange chromatography. Chem. Geol. 1984 , 45,  149.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   M. Rehkamper , M. Gartner , S. J. G. Galer , S. L. Goldstein , Separation of Ce from other rare-earth elements with application to Sm–Nd and La–Ce chronometry. Chem. Geol. 1996 , 129,  201.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   P. Richard , N. Schmizu , C. J. Allegre , 143Nd/144Nd, a natural tracer: an application to oceanic basalts. Earth Planet. Sci. Lett. 1976 , 31,  269.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   G. J. Wasserburg , S. B. Jacobsen , D. J. Depaolo , M. T. McCulloch , T. Wen , Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 1981 , 45,  2311.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   D. W. Mittlefehldt , G. W. Wetherill , Rb–Sr studies of CI and CM chondrites. Geochim. Cosmochim. Acta 1979 , 43,  201.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   M. R. Palmer , G. B. Douglas , A Bayesian statistical model for end-member analysis of sediment geochemistry, incorporating spatial dependencies. Appl. Stat. 2008 , 57,  313.
         open url image1

[36]   B. J. Peterson , B. Fry , Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 1987 , 18,  293.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1