Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

How does acid treatment to remove carbonates affect the isotopic and elemental composition of soils and sediments?

Milena Fernandes A C and Evelyn Krull B
+ Author Affiliations
- Author Affiliations

A South Australian Research and Development Institute, Aquatic Sciences Centre, PO Box 120, Henley Beach, SA 5022, Australia.

B CSIRO Land and Water, PMB 2, Glen Osmond, SA 5064, Australia.

C Corresponding author. Email: fernandes.milena@saugov.sa.gov.au

Environmental Chemistry 5(1) 33-39 https://doi.org/10.1071/EN07070
Submitted: 27 September 2007  Accepted: 9 January 2008   Published: 22 February 2008

Environmental context. The ability to accurately determine the elemental and isotopic composition of soils and sediments has important implications to our quantitative understanding of global biogeochemical cycles. However, the analysis of organic carbon in solid matrices is a time-consuming task that requires the selective removal of carbonates, a treatment that has the potential to significantly alter the composition of the original sample. In the present work, we compare three of the most common acid treatments used for carbonate removal, and critically evaluate their effect on the content and isotopic signature of organic carbon and nitrogen in both soils and sediments.

Abstract. In the present work, we compared the efficacy of three acid treatments in removing carbonates from soils and sediments for elemental and isotopic analysis. The methods tested were (1) refluxing with H2SO3; (2) in situ treatment with H2SO3 in silver capsules; and (3) treatment with HCl followed by rinsing with water. Refluxing with H2SO3 led to substantial losses of organic carbon and nitrogen, but comparatively small nitrogen isotopic shifts. The in situ treatment was inadequate for carbonate-rich samples (contents ≥30%) as a consequence of the formation of a mineral precipitate. Treatment with HCl led to substantial losses of nitrogen from carbonate-rich samples, and deviations in nitrogen isotopic signatures (δ15N) of up to 3.7‰. δ15N values showed no significant difference between acid-treated and untreated samples or between treatments, although variability was high and influenced by sample composition. Carbonate-poor samples showed no statistical difference in δ13C values between treatments, whereas carbonate-rich samples tended to be more 13C-depleted when treated with HCl, potentially suggesting the preferential preservation of 13C-depleted compounds (e.g. lipids or lignin).

Additional keywords: hydrochloric acid, nitrogen, organic carbon, stable isotopes, sulfurous acid.


Acknowledgements

We wish to thank Sonja Venema and Genevieve Mount (SARDI Aquatic Sciences), Janine McGowan and Athina Massis (CSIRO Land and Water) for sample preparation and analyses, and Stuart McClure (CSIRO Land and Water) for carbon and nitrogen IRMS analyses and advice.


References


[1]   K. Weliky , E. Suess , C. A. Ungerer , P. J. Muller , K. Fischer , Problems with accurate carbon measurements in marine sediments and particulate matter in seawater: a new approach. Limnol. Oceanogr. 1983 , 28,  1252.
         open url image1

[2]   P. N. Froelich , Analysis of organic carbon in marine sediments. Limnol. Oceanogr. 1980 , 25,  564.
         open url image1

[3]   J. Van Iperen , W. Helder , A method for the determination of organic carbon in calcareous marine sediments. Mar. Geol. 1985 , 64,  179.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   D. J. Verardo , P. N. Froelich , A. McIntyre , Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep-Sea Res. 1990 , 37,  157.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   J. I. Hedges , J. H. Stern , Carbon and nitrogen determinations of carbonate-containing solids. Limnol. Oceanogr. 1984 , 29,  657.
         open url image1

[6]   G. Cauwet , Optimisation d’une technique de dosage du carbone organique des sédiments. Chem. Geol. 1975 , 16,  59.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   J. Nieuwenhuize , Y. E. M. Maas , J. J. Middelburg , Rapid analysis of organic carbon and nitrogen in particulate materials. Mar. Chem. 1994 , 45,  217.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   M. Yamamuro , H. Kayanne , Rapid direct determination of organic carbon and nitrogen in carbonate-bearing sediments with a Yanaco MT-5 CHN analyser. Limnol. Oceanogr. 1995 , 40,  1001.
         open url image1

[9]   S. A. Ryba , R. M. Burgess , Effects of sample preparation on the measurement of organic carbon, hydrogen, nitrogen, sulfur, and oxygen concentrations in marine sediments. Chemosphere 2002 , 48,  139.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[10]   D. Harris , W. R. Horwáth , C. van Kessel , Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci. Soc. Am. J. 2001 , 65,  1853.
         open url image1

[11]   Cutter G. A., Radford-Knoery J., in Marine Particles: Analysis and Characterization. Geophysical Monographs 63 (Eds D. C. Hurd, D. W. Spencer) 1991, pp. 57–63 (American Geophysical Union: Washington, DC).

[12]   A. J. Midwood , T. W. Boutton , Soil carbonate decomposition by acid has little effect on δ13C of organic matter. Soil Biol. Biochem. 1998 , 30,  1301.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   P. D. Brooks , H. Geilmann , R. A. Werner , W. A. Brand , Improved precision of coupled δ13C and δ15N measurements from single samples using an elemental analyzer/isotope ratio mass spectrometer combination with a post-column six-port valve and selective CO2 trapping; improved halide robustness of the combustion reactor using CeO2. Rapid Commun. Mass Spectrom. 2003 , 17,  1924.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[14]   L. Lohse , R. T. Kloosterhuis , H. C. Stigter , W. Helder , W. van Raaphorst , T. C. E. van Weering , Carbonate removal by acidification causes loss of nitrogenous compounds in continental margin sediments. Mar. Chem. 2000 , 69,  193.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   P. King , H. Kennedy , P. P. Newton , T. D. Jickells , T. Brand , S. Calvert , G. Cauwet , H. Etcheber , B. Head , A. Khripounoff , B. Manighetti , J. C. Miquel , Analysis of total and organic carbon and total nitrogen in settling oceanic particles and a marine sediment: an interlaboratory comparison. Mar. Chem. 1998 , 60,  203.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   P. Kennedy , H. Kennedy , S. Papadimitriou , The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Commun. Mass Spectrom. 2005 , 19,  1063.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[17]   B. J. Peterson , B. Fry , Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 1987 , 18,  293.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   T. J. Butler , Composition of particles dry deposited to an inert surface at Ithaca, New York. Atmos. Environ. 1988 , 22,  895.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   T. E. Graedel , Mechanisms for the atmospheric corrosion of carbonate stone. J. Electrochem. Soc. 2000 , 147,  1006.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   J. A. Baldock , J. O. Skjemstad , Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 2000 , 31,  697.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   B. Constantz , S. Weiner , Acidic macromolecules associated with the mineral phase of Scleractinian coral skeletons. J. Exp. Zool. 1988 , 248,  253.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   A. E. Ingalls , R. C. Aller , C. Lee , S. G. Wakeham , Organic matter diagenesis in shallow water carbonate sediments. Geochim. Cosmochim. Acta 2004 , 68,  4363.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   M. Forbes , E. Bestland , R. Wells , Preliminary 14C dates on bulk soil organic matter from the Black Creek megafauna fossil site, Rocky River, Kangaroo Island, South Australia. Radiocarbon 2004 , 46,  437.
         open url image1

[24]   R. Grün , S. Eggins , R. T. Wells , E. Rhodes , E. A. Bestland , N. Spooner , M. Ayling , M. Forbes , M. McCulloch , A cautionary tale from down under: dating the Black Creek Swamp megafauna site on Kangaroo Island, South Australia. Quat. Geochronol. 2006 , 1,  142.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   E. S. Krull , E. A. Bestland , W. P. Gates , Soil organic matter decomposition and turnover in a tropical Ultisol: evidence from δ13C, δ15N and geochemistry. Radiocarbon 2002 , 44,  93.
         open url image1

[26]   C. J. Schubert , B. Nielsen , Effects of decarbonation treatments on δ13C values in marine sediments. Mar. Chem. 2000 , 72,  55.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   R. Benner , M. L. Fogel , E. K. Sprague , R. E. Hodson , Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 1987 , 329,  708.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   E. S. Krull , J. O. Skjemstad , δ13C and δ15N profiles in 14C-dated Oxisol and Vertisols as a function of soil chemistry and mineralogy. Geoderma 2003 , 112,  1.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   Fernandes M., Lauer P., Cheshire A., Svane I., Putro S., Mount G., Angove M., Sedawie T., Tanner J., Fairweather P., Barnett J., Doonan A., Aquafin CRC – Southern bluefin tuna aquaculture subprogram: tuna environment subproject – evaluation of waste composition and waste mitigation. Technical report, Aquafin CRC Project 4.3.2, FRDC Project 2001/103. SARDI Publication No. RD03/0037–9. SARDI Research Report Series No. 207 (Ed. M. Fernandes) 2007 (Aquafin CRC, Fisheries Research & Development Corporation and South Australian Research & Development Institute (Aquatic Sciences): Adelaide, SA).

[30]   M. Fernandes , A. Cheshire , A. Doonan , Sediment geochemistry in lower Spencer Gulf: Implications for southern bluefin tuna farming. Aust. J. Earth Sci. 2006 , 53,  421.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   Lauer P., Benthic metabolism adjacent to southern bluefin tuna (Thunnus maccoyii) pontoons in South Australia 2005, Ph.D. thesis, Flinders University, Adelaide, SA.

[32]   L. C. Radke , I. P. Prosser , M. Robb , B. Brooke , D. Fredericks , G. B. Douglas , J. Skemstad , The relationship between sediment and water quality, and riverine sediment loads in the wave-dominated estuaries of south-west Western Australia. Mar. Freshwater Res. 2004 , 55,  581.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   Fernandes M., Mount G., Tanner J., Sources of organic matter in sediments from Louth Bay, South Australia. SARDI Aquatic Sciences Publication No. F2006/000218–1. SARDI Research Report Series No. 206. 2007 (South Australian Research & Development Institute, Aquatic Sciences Centre: Adelaide, SA).

[34]   F. W. J. Leaney , G. B. Allison , J. C. Dighton , S. Trumbore , The age and hydrological history of Blue Lake, South Australia. Palaeogeogr. Palaeoclimatol. 1995 , 118,  111.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   J. O. Skjemstad , P. Clarke , J. A. Taylor , J. M. Oades , S. G. McClure , The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 1996 , 34,  251.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   J. O. Skjemstad , J. A. Taylor , Does the Walkley-Black method determine soil charcoal? Commun. Soil Sci. Plant Anal. 1999 , 30,  2299.
         open url image1

[37]   J. O. Skjemstad , J. A. Taylor , R. J. Smernik , Estimation of charcoal (char) in soils. Commun. Soil Sci. Plant Anal. 1999 , 30,  2283.
         open url image1

[38]   C. D. Grant , A. V. Blackmore , Self-mulching behaviour in clay soils: its definition and measurement. Aust. J. Soil Res. 1991 , 29,  155.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   E. S. Krull , E. A. Bestland , J. O. Skjemstad , J. F. Parr , Geochemistry (Delta13C, Delta15N, 13C NMR) and residence times (14C and OSL) of soil organic matter from red-brown earths of South Australia: implications for soil genesis. Geoderma 2006 , 132,  344.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[40]   E. S. Krull , J. O. Skjemstad , W. H. Burrows , S. G. Bray , J. G. Wynn , R. Bol , L. Spouncer , B. Harms , Recent vegetation changes in Central Queensland, Australia: evidence from δ13C and 14C analyses of soil organic matter. Geoderma 2005 , 126,  241.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1