Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Changes in proportions of arsenic species within an Ecklonia radiata food chain

Simon Foster A B , William Maher A and Frank Krikowa A
+ Author Affiliations
- Author Affiliations

A Ecochemistry Laboratory, Institute of Applied Ecology, University of Canberra, Belconnen, ACT 2601, Australia.

B Corresponding author. Email: simon.foster@canberra.edu.au

Environmental Chemistry 5(3) 176-183 https://doi.org/10.1071/EN07063
Submitted: 6 September 2007  Accepted: 20 May 2008   Published: 19 June 2008

Environmental context. The present study examines arsenic species in kelp and associated grazing animals of an Ecklonia radiata food chain. The study focusses on the changes in proportions of arsenoribosides obtained from E. radiata and mechanisms are proposed to explain the transformations of arsenoribosides observed in the organisms that graze on it.

Abstract. Total arsenic and arsenic species in the tissues of three growth stages of the macroalgae Ecklonia radiata and within organisms that feed on it are reported. Arsenic concentrations in E. radiata tissues varied from 40 to 153 μg g–1. Growth stage did not influence arsenic concentrations or arsenic species. E. radiata contained glycerol arsenoriboside (1–8.5%), phosphate arsenoriboside (10–22%) and sulfonate arsenoriboside (73–91%). Arsenic concentrations varied significantly among animal species and between tissues (5–123 μg g–1). Animals contained variable quantities of arsenobetaine (14–83%). Haliotis rubra tissues contained high concentrations of glycerol trimethylarsonioriboside (0.7–22%) and the fish Odax cyanomelas contained large quantities of phosphate arsenoriboside (25–64%) with little arsenobetaine (1.5–15%).

Arsenoribosides consumed from macroalgae are substantially converted or differentially accumulated as glycerol and phosphate arsenoribosides in animal tissues. In all animals, phosphate arsenoriboside would appear to be conserved or synthesised de novo. In gastropods, glycerol trimethylarsonioriboside and thio arsenic species are formed in the digestive system. Thus, the intermediate arsenic species that form a plausible pathway for the formation of arsenobetaine from dimethylarsenoribosides are present.

Additional keywords: Ecklonia radiata ecosystem, herbivores, macroalgae, total arsenic.


Acknowledgements

We would like to thank the Ecochemistry class for assistance with field sampling and sample preparation. The University of Canberra’s Vice Chancellor’s scholarship for S. Foster is gratefully acknowledged.


References


[1]   Edmonds J. S., Francesconi K. A., in Organometallic Compounds in the Environment (Ed. P. J. Craig) 2003, pp. 196–222 (Wiley: New York).

[2]   J. S. Edmonds , Y. Shibata , K. A. Francesconi , R. J. Rippingale , M. Morita , Arsenic transformations in short marine food chains studied by HPLC–ICP-MS. Appl. Organomet. Chem. 1997 , 11,  281.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   K. Francesconi , J. S. Edmonds , R. V. Stick , Arsenocholine from anaerobic decomposition of a trimethylarsonioriboside. Appl. Organomet. Chem. 1992 , 6,  247.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   J. Kirby , W. Maher , D. Spooner , Arsenic occurrence and species in near-shore macroalgae-feeding marine animals. Environ. Sci. Technol. 2005 , 39,  5999.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[5]   K. A. Francesconi , W. Goessler , S. Panutrakul , K. J. Irgolic , A novel arsenic-containing riboside (arsenosugar) in three species of gastropod. Sci. Total Environ. 1998 , 221,  139.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   S. Foster , W. Maher , E. Schmeisser , A. Taylor , F. Krikowa , S. C. Apte , Arsenic species in a rocky intertidal marine food chain in NSW, Australia, revisited. Environ. Chem. 2006 , 3,  304.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   E. Schmeisser , R. Raml , K. Francesconi , D. Kuehnelt , A.-L. Lindberg , C. Sörös , W. Goessler , Thio arsenosugars identified as natural constituents of mussels by liquid chromatography–mass spectrometry. Chem. Commun. 2004 , 16,  1824.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   V. Nischwitz , K. Kanaki , S. A. Pergantis , Mass spectrometric identification of novel arsinothioylsugars in marine bivalves and algae. J. Anal. At. Spectrom. 2006 , 21,  33.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   B. M. Gamble , P. A. Gallagher , J. A. Shoemaker , X. Wei , C. A. Schwegel , J. T. Creed , An investigation of the chemical stability of arsenosugars in simulated gastric juice and acidic environments using IC–ICP-MS and IC-ESI-MS/MS. Analyst 2002 , 127,  781.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[10]   B. M. Gamble , P. A. Gallagher , J. A. Shoemaker , A. N. Parks , D. J. Freeman , C. A. Schwegel , J. T. Creed , An investigation of the chemical stability of arsenosugars in basic environments using IC–ICP-MS and IC-ESI-MS/MS. Analyst 2003 , 128,  1458.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[11]   J. S. Edmonds , K. A. Francesconi , J. A. Hansen , Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna. Experientia 1982 , 38,  643.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   H. Castlehouse , C. Smith , A. Raab , C. Deacon , A. A. Meharg , J. Feldmann , Biotransformation and accumulation of arsenic in soil amended with seaweed. Environ. Sci. Technol. 2003 , 37,  951.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[13]   K. A. Francesconi , D. A. Hunter , B. Bachmann , G. Raber , W. Goessler , Uptake and transformation of arsenosugars in the shrimp Crangon crangon. Appl. Organomet. Chem. 1999 , 13,  669.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   H. Kirkman , The first year in the life history and the survival of the juvenile marine macrophyte, Ecklonia radiata (Turn.) J. Agardh. J. Exp. Mar. Biol. Ecol. 1981 , 55,  243.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   W. J. Fletcher , R. W. Day , The distribution of epifauna on Ecklonia radiata (C. Agardh) J. Agardh and the effect of disturbance. J. Exp. Mar. Biol. Ecol. 1983 , 71,  205.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   T. Wernberg , M. A. Coleman , A. Fairhead , S. Miller , M. Thomsen , Morphology of Ecklonia radiata (Phaeophyta: Laminarales) along its geographic distribution in south-western Australia and Australasia. Mar. Biol. 2003 , 143,  47–55.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   H. Kirkman , Standing stock and production of Ecklonia radiata (C.Ag.): J. Agardh. J. Exp. Mar. Biol. Ecol. 1984 , 76,  119.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   G. P. Jones , Interactions between herbivorous fishes and macro-algae on a temperate rocky reef. J. Exp. Mar. Biol. Ecol. 1992 , 159,  217.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   N. L. Andrew , G. P. Jones , Patch formation by herbivorous fish in a temperate Australian kelp forest. Oecologia 1990 , 85,  57.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   M. Guest , P. Nichols , S. Frusher , A. Hirst , Evidence of abalone (Haliotis rubra) diet from combined fatty acid and stable isotope analyses. Mar. Biol. 2008 , 153,  579.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   N. L. Andrew , Changes in subtidal habitat following mass mortality of sea urchins in Botany Bay, New South Wales. Aust. J. Ecol. 1991 , 16,  353.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   G. P. Jones , N. L. Andrew , Herbivory and patch dynamics on rocky reefs in temperate Australasia: the roles of fish and sea urchins. Aust. J. Ecol. 1990 , 15,  505.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   S. Baldwin , M. Deaker , W. Maher , Low-volume microwave digestion of marine biological tissues for the measurement of trace elements. Analyst 1994 , 119,  1701.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[24]   W. Maher , F. Krikowa , J. Kirby , A. T. Townsend , P. Snitch , Measurement of trace elements in marine environmental samples using solution ICP-MS. Current and future applications. Aust. J. Chem. 2003 , 56,  103.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   J. Kirby , W. Maher , Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC–ICP-MS J. Anal. At. Spectrom. 2002 , 17,  838.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   Clarke K. R., Warwick R. M., Changes in marine communities: an approach to statistical analysis and interpretation 1994 (Plymouth Marine Laboratory: Plymouth, UK).

[27]   R. Tukai , W. A. Maher , I. J. McNaught , M. J. Ellwood , M. Coleman , Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia. Mar. Freshwater Res. 2002 , 53,  971.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   S. D. A. Smith , The macrofaunal community of Ecklonia radiata holdfasts: variation associated with sediment regime, sponge cover and depth. Aust. J. Ecol. 1996 , 21,  144.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   K. A. Francesconi , J. S. Edmonds , Arsenic species in marine samples. Croat. Chem. Acta 1998 , 71,  343.
         open url image1

[30]   J. Meier , N. Kienzl , W. Goessler , K. A. Francesconi , The occurrence of thio-arsenosugars in some samples of marine algae. Environ. Chem. 2005 , 2,  304.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   Foster S., Arsenic cycling in marine ecosystems 2007, Ph.D. thesis, University of Canberra, Australia.

[32]   Y. Shibata , M. Morita , A novel trimethylated arsenic-sugar isolated from the brown algae Sargassum thunbergia. Agric. Biol. Chem. 1988 , 52,  1087.
         open url image1

[33]   S. Foster , W. Maher , F. Krikowa , J. Kirby , S. C. Apte , A microwave-assisted technique for the sequential extraction of water and non-water soluble arsenic compounds from estuarine plant and marine animal tissue using dilute nitric acid. Talanta 2007 , 71,  537.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   J. C. Ogden , P. S. Label , The role of herbivorous fish and urchins in coral reef communities. Environ. Biol. Fishes 1978 , 3,  49.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   J. J. Sloth , E. H. Larsen , K. Julshamn , Report on three aliphatic dimethylarsinoyl compounds as common minor constituents in marine samples. An investigation using high-performance liquid chromatography/inductively coupled plasma mass spectrometry and electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005 , 19,  227.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   K. D. Clements , Endosymbiotic communities of two herbivorous labioid fishes, Odax cyanomelas and O. pullus. Mar. Biol. 1991 , 109,  223.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   J. H. Erasmus , P. A. Cook , V. E. Coyne , The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture 1997 , 155,  377.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   T. A. Anderson , Mechanisms of digestion in the marine herbivore, the luderick, Girella tricuspidata (Quoy and Gaimard). J. Fish Biol. 1991 , 39,  535.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   J. M. Harris , The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb. Ecol. 1993 , 25,  195.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[40]   R. W. Eppley , R. Lasker , Alginase in the sea urchin Strongylocentrotus purpuratus. Science 1959 , 129,  214.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[41]   T. Sawabe , Y. Oda , Y. Shiomi , Y. Ezura , Alginate degradation by bacteria isolated from the gut of sea urchins and abalones. Microb. Ecol. 1995 , 30,  193.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   F. Dickens , Yeast fermentation of pentose phosphoric acids. Biochem. J. 1938 , 32,  1645.
        | PubMed |  open url image1

[43]   W. Maher , W. Goessler , J. Kirby , G. Raber , Arsenic concentrations and speciation in the tissues and blood of sea mullet (Mugil cephalus) from Lake Macquarie NSW, Australia. Mar. Chem. 1999 , 68,  169.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[44]   H. F. ter Welle , E. C. Slater , Uncoupling of respiratory-chain phosphorylation by arsenate. Biochim. Biophys. Acta 1967 , 143,  1.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[45]   H. R. Hansen , M. Jaspars , J. Feldmann , Arsinothioyl-sugars produced by in vitro incubation of seaweed extract with liver cytosol analysed by HPLC coupled simultaneously to ES-MS and ICP-MS. Analyst 2004 , 129,  1058.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[46]   W. Reichenbecher , D. P. Kelly , J. C. Murrell , Desulfonation of propanesulfonic acid by Comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch. Microbiol. 1999 , 172,  387.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[47]   A. M. Cook , H. Laue , F. Junker , Microbial desulfonation. FEMS Microbiol. Ecol. 1998 , 22,  399.
         open url image1

[48]   M. Suwalsky , C. Rivera , C. P. Sotomayor , M. Jemiola-Rzeminska , K. Strzalka , Monomethylarsonate (MMAV) exerts stronger effects than arsenate on the structure and thermotropic properties of phospholipids bilayers. Biophys. Chem. 2008 , 132,  1.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[49]   K. A. Francesconi , R. V. Stick , J. S. Edmonds , Glycerolphosphorylarsenocholine and phosphatidylarsenocholine in yelloweye mullet (Aldrichetta forsteri) following oral administration of arsenocholine. Experientia 1990 , 46,  464.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[50]   K. Francesconi , J. S. Edmonds , R. V. Stick , Synthesis, NMR spectra and chromatographic properties of five trimethylarsonioriboses Appl. Organomet. Chem. 1994 , 8,  517.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[51]   S. McSheehy , J. Szpunar , R. Lobinski , V. Haldys , J. Tortajada , J. S. Edmonds , Characterization of arsenic species in kidney of the clam Tridacna derasa by multidimensional liquid chromatography-ICPMS and electrospray time-of-flight tandem mass spectrometry. Anal. Chem. 2002 , 74,  2370.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[52]   Francesconi K. A., Studies on the biotransformation of arsenic in the marine environment 1991, Ph.D. thesis, Curtin University of Technology, Perth, Australia.




Accessory publication

All tables and Fig. A1 are contained in an Accessory publication, which is available from the Environmental Chemistry website.