Effects of hydroponic solution composition, electrical conductivity and plant spacing on yield and quality of strawberries
RA Sarooshi and GC Cresswell
Australian Journal of Experimental Agriculture
34(4) 529 - 535
Published: 1994
Abstract
The influence of nutrient solution adjustment and replacement (management), its electrical conductivity (EC) and plant spacing on yield and quality of strawbeny fruit (var. Torrey) produced in a recirculating hydroponic system was studied at Gosford, New South Wales. Four ways of managing the nutrient solution were examined: (i) pH and EC adjusted daily and the solution replaced every 8 weeks (current grower practice); (ii) as above except that a topping up solution with lower potassium to nitrogen (K: N) ratio was used for EC adjustment; (iii) no daily adjustment of EC or pH and one-third of solution replaced every 2 weeks; and (iv) no daily adjustment of solution volume, EC or pH and full replacement after 8 weeks. Compared with grower practice, these alternative solution management strategies provided no advantage in yield, fruit number, or in the ¦Brix, citric acid, sweetness or flavour of fruit. Use of a topping up solution supplemented with ammonium nitrate (NH4NO3) and calcium nitrate [Ca(NO3)2] to reduce the K : N ratio from 1.7:1.0 to 1.4:1.0 had no effect (P>0.05) on yield but significantly increased (P<0.05) berry weight and improved fruit aroma. Regardless of which method of nutrient solution adjustment and replacement was used, the chemical composition of the recirculating solution changed markedly over 53 days. The method of nutrient solution management significantly (P<0.05) affected leaf phosphorus (P), calcium (Ca), magnesium (Mg), manganese (Mn), and zinc (Zn) but only Mg fell to a suboptimal level for growth of strawberries. Reducing the EC of the nutrient solution from 3 to 2 dS/m at early fruit set gave heavier (P<0.05) berries compared with constant EC of 2 dS/m. Increasing the EC from 2 to 3 or reducing it from 3 to 2 at early fruit set resulted in sweeter (P<0.05) berries and reducing the EC from 4 to 2 improved fruit aroma. Yield declined (P<0.05) when EC was increased from 2 to 4 dS/m. Solution EC bad significant effects (P<0.05) on leaf P, Mg, Mn and Zn. An increase in planting density from 5.35 to 9.35 plants/m2 lowered (P<0.05) marketable yield per plant and fruit acidity but gave 41% higher (P<0.05) yield on an area basis.https://doi.org/10.1071/EA9940529
© CSIRO 1994