Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE (Open Access)

How digital is agriculture in a subset of countries from South America? Adoption and limitations

L. A. Puntel https://orcid.org/0000-0001-6455-510X A * , É. L. Bolfe https://orcid.org/0000-0001-7777-2445 B C , R. J. M. Melchiori https://orcid.org/0000-0001-7368-3146 D , R. Ortega https://orcid.org/0000-0001-8294-1311 E , G. Tiscornia https://orcid.org/0000-0002-6650-651X F , A. Roel https://orcid.org/0000-0001-5388-4784 G , F. Scaramuzza H , S. Best I , A. G. Berger https://orcid.org/0000-0003-1096-8421 J , D. S. S. Hansel https://orcid.org/0000-0002-4578-6057 K , D. Palacios Durán L M and G. R. Balboa https://orcid.org/0000-0003-3819-5088 A *
+ Author Affiliations
- Author Affiliations

A Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA.

B Embrapa Agricultura Digital, Brazilian Agricultural Research Corporation, Campinas, Brazil.

C Department of Geography, University of Campinas, Campinas, Brazil.

D Instituto Nacional de Tecnología Agropecuaria EEA, Paraná, Argentina.

E Universidad Técnica Federico Santa María, Santiago, Chile.

F Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay.

G Instituto Nacional de Investigación Agropecuaria, Treinta y Tres, Uruguay.

H Instituto Nacional de Tecnología Agropecuaria EEA, Manfredi, Argentina.

I Instituto de Investigaciones Agropecuarias, Quilamapu, Chile.

J Instituto Nacional de Investigación Agropecuaria, La Estanzuela, Uruguay.

K Corteva Agriscience, Passo Fundo, Brazil.

L Modag, Chanco, Chile.

M Colegio de Ingenieros Agronómos, Santiago, Chile.

* Correspondence to: lpuntel2@unl.edu, gbalboa7@unl.edu

Handling Editor: Simon Cook

Crop & Pasture Science - https://doi.org/10.1071/CP21759
Submitted: 9 November 2021  Accepted: 13 July 2022   Published online: 16 September 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Digital agriculture (DA) can contribute solutions to meet an increase in healthy, nutritious, and affordable food demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. A systematic review and case studies from Brazil, Argentina, Uruguay, and Chile were conducted to address the following objectives: (1) quantify adoption of existing DA technologies, (2) identify limitations for DA adoption; and (3) summarise existing metrics to benchmark DA benefits. Level of DA adoption was led by Brazil and Argentina followed by Uruguay and at a slower rate, Chile. GPS guidance systems, mapping tools, mobile apps and remote sensing were the most adopted DA technologies in SA. The most reported limitations to adoption were technology cost, lack of training, limited number of companies providing services, and unclear benefits from DA. Across the case studies, there was no clear definition of DA. To mitigate some of these limitations, our findings suggest the need for a DA educational curriculum that can fulfill the demand for job skills such as data processing, analysis and interpretation. Regional efforts are needed to standardise these metrics. This will allow stakeholders to design targeted initiatives to promote DA towards sustainability of food production in the region.

Keywords: agriculture 4.0, digital agriculture, digital technologies, IoT, regional development, south america, sustainability, technology adoption.


References

Accorsi R, Cholette S, Manzini R, Pini C, Penazzi S (2016) The land-network problem: ecosystem carbon balance in planning sustainable agro-food supply chains. Journal of Cleaner Production 112, 158–171.
The land-network problem: ecosystem carbon balance in planning sustainable agro-food supply chains.Crossref | GoogleScholarGoogle Scholar |

AgTechGarage (2021) Os impactos do AgTech Garage no Ecossistema de Inovação. Available at https://www.agtechgarage.com/

Aker JC (2011) Dial “A” for agriculture: a review of information and communication technologies for agricultural extension in developing countries. Agricultural Economics 42, 631–647.
Dial “A” for agriculture: a review of information and communication technologies for agricultural extension in developing countries.Crossref | GoogleScholarGoogle Scholar |

Al-Ghobari HM, Mohammad FS (2011) Intelligent irrigation performance: evaluation and quantifying its ability for conserving water in arid region. Applied Water Science 1, 73–83.
Intelligent irrigation performance: evaluation and quantifying its ability for conserving water in arid region.Crossref | GoogleScholarGoogle Scholar |

Amado TJC, Teixeira TDG, Horbe TAN, Schawalbert RA, Corazza GM, Buss CP, Kerber L, Tisot BS, Wagner WA (2016) ‘Projeto Aquarius – principais contribuições e resultados.’ ‘W.A.’ pp. 312. (CESPOL: Santa Maria, RS, Brazil) Available at https://www.ufsm.br/app/uploads/sites/526/2019/01/AP_RS.pdf

American Farm Bureau Federation (2014) Privacy and security principles for farm data. Available at https://www.agdatatransparent.com/principles

Andrade FH (2016) ‘Los desafíos de la Agricultura.’ (International Plant Nutrition Institute: Acassuso, Argentina) Available at https://inta.gob.ar/sites/default/files/inta_los_desafios_de_la_agricultura_fandrade.pdf

Asociacion de Cooperativas Argentinas (2021) Digital Platform: Aca Mi Campo. www.acamicapo.com.ar.

Balafoutis A, Beck B, Fountas S, Vangeyte J, Wal TVd, Soto I, Gómez-Barbero M, Barnes A, Eory V (2017) Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 9, 1339
Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics.Crossref | GoogleScholarGoogle Scholar |

Balboa GR (2014) ‘Comparación agronómica de dos criterios de dosificación de nitrógeno en maíz en la llanura bien drenada del Centro y Sur de la Provincia de Córdoba.’ (Universidad Nacional de Rio Cuarto: Argentina) Available at https://www.produccionvegetalunrc.org/images/fotos/447_BALBOA_GR_Tesis_Maestria_CS_Agropecuarias_DEFENDIDA.pdf

Balboa GR (2020) Implementation of digital agriculture tools to close yield gaps in South of Cordoba Cropping Systems. Digital Agriculture Project, Department of Agronomy, Rio Cuarto National University, Argentina. Available at https://www.produccionvegetalunrc.org/ampliar2.php?id=205

Banerjee A, Bandyopadhyay T, Acharya P (2013) Data analytics: hyped up aspirations or true potential? Vikalpa 38, 1–12.
Data analytics: hyped up aspirations or true potential?Crossref | GoogleScholarGoogle Scholar |

Barge P, Gay P, Merlino V, Tortia C (2013) Radio frequency identification technologies for livestock management and meat supply chain traceability. Canadian Journal of Animal Science 93, 23–33.
Radio frequency identification technologies for livestock management and meat supply chain traceability.Crossref | GoogleScholarGoogle Scholar |

Berger A, Restaino E, Otaño C, Sawchik J (2019) Agricultura de Precisión: Qué es y cuánto se usa en Uruguay? Revista INIA Uruguay 59, 41–45.

Best S (2021) La transformacion digital del sector fruticola y de os cultivos intensivos en Chile. Available at https://www.youtube.com/watch?v=FBGAat5vT4Q&list=LL&index=6&t=7334s

Best S, Leon L, Mendez A, Flores F, Aguilera H (2014) ‘Adopción y desarrollo de tecnología en agricultura de precisión.’ Boletin Digital No 3. (Instituto de Investigaciones Agropecuarias: Chillan, Chile) Available at https://bibliotecadigital.ciren.cl/handle/20.500.13082/31790

Best SS, Vargas Quiñones P (2020) ‘Boletin Informativo 148: Aplicación de la agricultura tecnológica 4.0.’ (INIA Chile) Available at https://biblioteca.inia.cl/bitstream/handle/123456789/4011/NR42318.pdf?sequence=1&isAllowed=y

Birner R, Daum T, Pray C (2021) Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Applied Economic Perspectives and Policy 43, 1260–1285.
Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges.Crossref | GoogleScholarGoogle Scholar |

Bolfe ÉL, Jorge LAdC, Sanches ID, Luchiari Júnior A, da Costa CC, Victoria DdC, Inamasu RY, Grego CR, Ferreira VR, Ramirez AR (2020) Precision and digital agriculture: adoption of technologies and perception of Brazilian farmers. Agriculture 10, 653
Precision and digital agriculture: adoption of technologies and perception of Brazilian farmers.Crossref | GoogleScholarGoogle Scholar |

Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology 13, 679–706.
Modelling the role of agriculture for the 20th century global terrestrial carbon balance.Crossref | GoogleScholarGoogle Scholar |

Bongiovanni R, Chartuni Montovani E, Best S, Roel A (2006) ‘Agricultura de precisión: integrando conocimientos para una agricultura moderna y sustentable.’ (PROCISUR/IICA: Montevideo, Uruguay) Available at https://www.procisur.org.uy/bibliotecas/libros/agricultura-de-precision-integrando-conocimientos-para-una-agricultura-moderna-y-sustentable/es

Bongiovanni R, Lowenberg-Deboer J (2000) Economics of variable rate lime in Indiana. Precision Agriculture 2, 55–70.
Economics of variable rate lime in Indiana.Crossref | GoogleScholarGoogle Scholar |

Borghi E, Avanzi JC, Bortolon L, Luchiari Junior A, Bortolon ESO (2016) Adoption and use of precision agriculture in Brazil: perception of growers and service dealership. Journal of Agricultural Science 8, 89
Adoption and use of precision agriculture in Brazil: perception of growers and service dealership.Crossref | GoogleScholarGoogle Scholar |

Bragachini M (1999) Aplicación práctica de la agricultura de precisión para incrementar la productividad. Nuestro Campo 7,

Bragachini M, Mendez A (2005) Agricultura de precisión en Argentina: tendencias, innovaciones y herramientas. Nuestro Campo 13, 22–32.

Bragachini M, Mendez A, Scaramuzza F, Proietti F (2004) ‘Historia y desarrollo de la agricultura de precision en Argentina.’ (INTA)

Bragachini M, Mendez A, Scaramuzza F, Velez JP, Villaroel D (2010) Dosificación variable de insumos. In ‘En 9no curso internacional de agricultura de precision y 4ta expo de maquinas precisas’. Córdoba, Argentina. pp. 137–146. (INTA: Córdoba, Argentina)

Byerlee D (1992) Technical change, productivity, and sustainability in irrigated cropping systems of South Asia: emerging issues in the post-green revolution Era. Journal of International Development 4, 477–496.
Technical change, productivity, and sustainability in irrigated cropping systems of South Asia: emerging issues in the post-green revolution Era.Crossref | GoogleScholarGoogle Scholar |

Capraro F, Tosetti S, Mut V (2018) Telemetría Agrícola. Un acercamiento hacia las nuevas tecnologías disponibles en riego de precisión. In ‘10° Congreso argentino de agroinformática (CAI 2018) - 47JAIIO’. pp. 293–306. (Sociedad Argentina de Informática e Investigación Operativa: Buenos Aires) Available at http://sedici.unlp.edu.ar/handle/10915/71432

Casaburi L, Kremer M, Ramrattan R (2019) Crony capitalism, collective action, and ICT: evidence from Kenyan contract farming. Available at https://www.econ.uzh.ch/dam/jcr:e2ffc4e5-ab32-4405-bfa4-70b0e962aa81/hotline_paper_20191015_MERGED.pdf

Cassman KG, Grassini P (2020) A global perspective on sustainable intensification research. Nature Sustainability 3, 262–268.
A global perspective on sustainable intensification research.Crossref | GoogleScholarGoogle Scholar |

Cerliani C, Esposito G, Morla F, Naville R (2018) Generación de prescripciones de densidad variable a escala de lote en el sur de la provincia de Córdoba (Argentina). In ‘Trabajo presentado al Primer Congreso Latinoamericano de Agricultura de Precisión. 10’. (Chile) Available at https://www.produccionvegetalunrc.org/images/fotos/412_Cerliani,%20C%20-%20CLAP2018.pdf

Chavas J-P, Nauges C (2020) Uncertainty, learning, and technology adoption in agriculture. Applied Economic Perspectives and Policy 42, 42–53.
Uncertainty, learning, and technology adoption in agriculture.Crossref | GoogleScholarGoogle Scholar |

Chlingaryan A, Sukkarieh S, Whelan B (2018) Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Computers and Electronics in Agriculture 151, 61–69.
Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review.Crossref | GoogleScholarGoogle Scholar |

Chopin P, Mubaya CP, Descheemaeker K, Öborn I, Bergkvist G (2021) Avenues for improving farming sustainability assessment with upgraded tools, sustainability framing and indicators. A review. Agronomy for Sustainable Development 41, 19
Avenues for improving farming sustainability assessment with upgraded tools, sustainability framing and indicators. A review.Crossref | GoogleScholarGoogle Scholar |

Cook S, Jackson EL, Fisher MJ Cook S, Jackson EL, Fisher MJ (2022) Embedding digital agriculture into sustainable Australian food systems: pathways and pitfalls to value creation. International Journal of Agricultural Sustainability 20, 346–367.
Embedding digital agriculture into sustainable Australian food systems: pathways and pitfalls to value creation.Crossref | GoogleScholarGoogle Scholar |

Corassa GM, Amado TJC, Liska T, Sharda A, Fulton J, Ciampitti IA (2018) Planter technology to reduce double-planted area and improve corn and soybean yields. Agronomy Journal 110, 300–310.
Planter technology to reduce double-planted area and improve corn and soybean yields.Crossref | GoogleScholarGoogle Scholar |

Cordoba Agriculture and Livestock Ministry (2021) ‘Boletin Oficial de la Provincia de Cordoba, Argentina.’ Resolucion 238/2021. (Ministerio de Agricultura y Ganaderia: Cordoba) Available at https://www.bccba.org.ar/wp-content/uploads/2022/02/4642-Descargar-Resolucion.pdf

CSB (2020) ‘From hype to implementation: digitization in the food industry.’ (CSB-System AG: Germany) Available at https://info.csb.com/hubfs/downloads/Studie/2020/CSB%20Digitization%20study%202020%20-%20EN.pdf?utm_campaign=Digitization%20Study%202020&utm_medium=email&_hsmi=77900958&_hsenc=p2ANqtz-8peWit2W7tcpOAbETJkRWS5uwysnONsYT6yN-v40Fg4Mx0OAzFAH2UMQcqUU4GxPXiugMnSUsF-jFGGhNzM3qYa9PzBQ&utm_content=77900958&utm_source=hs_automation

Darnell R, Robertson M, Brown J, Moore A, Barry S, Bramley R, Grundy M (2018) The current and future state of Australian agricultural data. Farm Policy Journal 15, 41–49.

DeLay ND, Thompson NM, Mintert JR (2022) Precision agriculture technology adoption and technical efficiency. Journal of Agricultural Economics 73, 195–219.
Precision agriculture technology adoption and technical efficiency.Crossref | GoogleScholarGoogle Scholar |

DIEA (2011) ‘Censo general agropecuario 2011: resultados definitivos.’ (Ministerio de Ganaderia, Agricultura y Pesca, Republica Oriental del Uruguay: Uruguay)

ECLAC (2021) Agro 4.0 project executive summary. The United Nations Economic Commission for Latin America and the Caribbean, Chile. Available at https://www.cepal.org/es/proyectos/agro-40-0

EMBRAPA (2020) Agricultura Digital no Brasil - Pesquisa online Embrapa Sebrae - INPE 2020. Available at https://www.embrapa.br/documents/10180/9543845/Agricultura+Digital+no+Brasil+-+Pesquisa+online+Embrapa+Sebrae+-+INPE+2020.pdf/3e1198e9-7c03-3b7e-b87c-d2d1977f34a9?download=true

Erickson BJ, Lowenberg-Deboer J (2020) 2020 CropLife Purdue University precision agriculture dealership survey, survey result. Purdue University, West Lafayette, Indiana. Available at https://www.croplife.com/precision-tech/2020-precision-ag-dealership-survey-moving-the-needle-on-decision-agriculture/

Erickson B, Lowenberg-DeBoer J, Bradford J (2017) 2017 Precision agriculture dealership survey. Crop Life Magazine and Purdue University. Available at https://agribusiness.purdue.edu/wp-content/uploads/2019/07/croplife-purdue-2017-precision-dealer-survey-report.pdf

Esposito GP (2013) ‘Analisis de la variabilidad espacio-tempora de la respuesta al nitrógeno en maíz mediante un modelo econométrico mixto espacial (MEME).’ (Universidad Nacional de Cordoba)

Fabregas R, Kremer M, Schilbach F (2019) Realizing the potential of digital development: the case of agricultural advice. Science 366, 6471
Realizing the potential of digital development: the case of agricultural advice.Crossref | GoogleScholarGoogle Scholar |

FAO (2017) Productivity and efficiency measurement in agriculture literature review and gaps analysis publication prepared in the framework of the global strategy to improve agricultural and rural statistics. Available at https://www.fao.org/3/ca6428en/ca6428en.pdf

FAO (2021a) ‘World food and agriculture – statistical yearbook 2021.’ (FAO: Rome, Italy) https://doi.org/
| Crossref |

FAO (2021b) ‘Empowering smallholder farmers to access digital agricultural extension and advisory services.’ (United Nations)

Ferris JL (2017) Data privacy and protection in the agriculture industry: is federal regulation necessary? Minnesota Journal of Law, Science & Technology 18, https://scholarship.law.umn.edu/mjlst/vol18/iss1/6

Figueiredo S, Jardim F, Sakuda L (2021) ‘Radar Agtech Mapeamento das startups do setor agro brasileiro Basil 2020/2021.’ (EMBRAPA: Brasilia)

Fischer RA, Connor DJ (2018) Issues for cropping and agricultural science in the next 20 years. Field Crops Research 222, 121–142.
Issues for cropping and agricultural science in the next 20 years.Crossref | GoogleScholarGoogle Scholar |

Fuglie K, Gautam M, Goyal A, Maloney WF (2020) ‘Harvesting prosperity: technology and productivity growth in agriculture.’ (World Bank: Washington, DC, USA) Available at https://openknowledge.worldbank.org/handle/10986/32350

Gimenez LM, Molin JP (2004) Algorithm for removing errors on yield maps data for precision agriculture. Brazilian Journal of Agrocomputation 2, 44

Gimenez LM, Molin JP (2018) Agricultura de precisão sob a perspectiva de seus diversos atores. Informaçõnes Agronômicas 162, 5

GSMA (2020) The mobile economy Latin America 2020. Available at https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/12/GSMA_MobileEconomy2020_LATAM_Eng.pdf

Hermans F, Geerling-Eiff F, Potters J, Klerkx L (2019) Public-private partnerships as systemic agricultural innovation policy instruments – assessing their contribution to innovation system function dynamics. NJAS: Wageningen Journal of Life Sciences 88, 76–95.
Public-private partnerships as systemic agricultural innovation policy instruments – assessing their contribution to innovation system function dynamics.Crossref | GoogleScholarGoogle Scholar |

Hernandez C, Cerliani C, Naville R, Esposito G (2018) Utilización de altimetría SRTM para la prescripción de fertilización nitrogenada variable del maíz en Córdoba. In ‘I Congreso latinoamericano de agricultura de precision’. pp. 1–12. (Latin American Asociation of Precision Agriculture) Available at https://www.produccionvegetalunrc.org/images/fotos/23_Hernandez,%20C.%20M.%20-%20CLAP2018%20-%20version%20final.pdf

IBGE (2017) Instituto Brasileiro de Geografia e Estatística: Censo Brasil Agro 2017, Resultados definitivos. Instituto Brasileiro de Geografia e Estatística. Available at https://censoagro2017.ibge.gov.br/resultados-censo-agro-2017.html

IBRD, WB (2021) World development report 2021: data for better lives. International Bank for Reconstruction and Development, The World BANK, Washington, DC, USA. Available at
| Crossref |

IDB (2019) ‘AG-TECH: Agtech innovation map in Latin America and the Caribbean.’ (Interamerican Development Bank) https://doi.org/
| Crossref |

IICA (2019) Conectividad Rural en América Latina y el Caribe. Un puente al desarrollo sostenible en tiempos de pandemia, Report. Instituto Interamericano de Cooperación para la Agricultura. Available at https://blog.iica.int/sites/default/files/2020-12/BVE20108887e%20conectividad%20rural%20en%20ALC%20Sandra%20Joaquin%20Matias.pdf

INDEC (2019) Censo Nacional Censo Nacional Agropecuario Agropecuario, 2018. Instotuto Nacional de Estadisticas y Censos, Argentina.

INE (2007) Instituto Nacional de Estadistica de Chile. Censo Agropecuario 2007. Cuadros estadisticos. Available at https://www.ine.cl/estadisticas/economia/agricultura-agroindustria-y-pesca/censos-agropecuarios

INIA GRAS (2021) Portal INIA GRAS. Available at http://www.inia.uy/gras/

Jakku E, Taylor B, Fleming A, Mason C, Fielke S, Sounness C, Thorburn P (2019) “If they don’t tell us what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming. NJAS: Wageningen Journal of Life Sciences 90–91, 1–13.
“If they don’t tell us what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming.Crossref | GoogleScholarGoogle Scholar |

Jensen R (2007) The digital provider: information (technology), market performance, and welfare in the South Indian fisheries sector. The Quarterly Journal of Economics CXXII, 879–924.

Karetsos S, Costopoulou C, Sideridis A (2014) Developing a smartphone app for m-government in agriculture. Journal of Agricultural Informatics 5, 1–8.
Developing a smartphone app for m-government in agriculture.Crossref | GoogleScholarGoogle Scholar |

Kayad A, Sozzi M, Gatto S, Whelan B, Sartori L, Marinello F (2021) Ten years of corn yield dynamics at field scale under digital agriculture solutions: a case study from North Italy. Computers and Electronics in Agriculture 185, 106126
Ten years of corn yield dynamics at field scale under digital agriculture solutions: a case study from North Italy.Crossref | GoogleScholarGoogle Scholar |

Kemerer A, Melchiori R, Albarenque S (2020) Información Agronómica para la Agricultura de Precisión generada en la EEA Paraná del INTA. Electronic Journal of SADIO (EJS) 19, 33–48.

Keogh M (2019) A national vision for digital agriculture. In ‘Growing a digital future for australian agriculture national forum, Australia’. (Australian Competition & Consumer Commission: Australia) Available at https://www.accc.gov.au/speech/a-national-vision-for-digital-agriculture

Klerkx L, Jakku E, Labarthe P (2019) A review of social science on digital agriculture, smart farming and agriculture 4.0: new contributions and a future research agenda. NJAS: Wageningen Journal of Life Sciences 90–91, 1–16.
A review of social science on digital agriculture, smart farming and agriculture 4.0: new contributions and a future research agenda.Crossref | GoogleScholarGoogle Scholar |

Kolling CE, Rampim L (2021) Agricultura de precisao e digital: perspectivas e desafios dos produtores rurais do esado do Parana. Revista Uningá Review 36, eURJ3981

Lachman J, López A (2019) Digitalización y servicios intensivos en conocimientos en RRNN renovables: el sector agtech en la Argentina. In ‘LIV Reunion Anual’. (Asociación Argentina de Economia Politica) Available at https://ideas.repec.org/p/aep/anales/4159.html

Lajoie-O’Malley A, Bronson K, van der Burg S, Klerkx L (2020) The future(s) of digital agriculture and sustainable food systems: an analysis of high-level policy documents. Ecosystem Services 45, 101183
The future(s) of digital agriculture and sustainable food systems: an analysis of high-level policy documents.Crossref | GoogleScholarGoogle Scholar |

Lebacq T, Baret PV, Stilmant D (2013) Sustainability indicators for livestock farming. A review. Agronomy for Sustainable Development 33, 311–327.
Sustainability indicators for livestock farming. A review.Crossref | GoogleScholarGoogle Scholar |

Llewellyn R, Ouzman J (2014) Adoption of precision agriculture-related practices: status, opportunities and the role of farm advisers. Report for Grains Research and Development Corporation, CSIRO, Australia. Available at https://grdc.com.au/resources-and-publications/all-publications/publications/2014/12/adoption-of-precision-agriculture-related-practices

Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources 34, 179–204.
Crop yield gaps: their importance, magnitudes, and causes.Crossref | GoogleScholarGoogle Scholar |

Lowenberg-DeBoer J, Erickson B (2019) Setting the record straight on precision agriculture adoption. Agronomy Journal 111, 1552–1569.
Setting the record straight on precision agriculture adoption.Crossref | GoogleScholarGoogle Scholar |

Maia RF, Netto I, Tran ALH (2017) Precision agriculture using remote monitoring systems in Brazil. In ‘2017 IEEE global humanitarian technology conference (GHTC)’. pp. 1–6. (IEEE) https://doi.org/
| Crossref |

Melchiori R, Albarenque, SM, Kemerer A (2013) Uso, adopción y limitaciones de la Agricultura de Precisión en Argentina. In ‘12° Curso de Agricultura de Precisión y Expo de Máquinas Precisas, Manfredi, Argentina’. pp. 1–7. (INTA: Manfredi, Argentina) Available at https://inta.gob.ar/sites/default/files/script-tmp-inta_uso_adopcin_y_limitaciones_de_la_agricultura_de_.pdf

Melchiori RJM, Albarenque SM, Kemerer AC (2018) Evolucion y cambios en la adopción de la agricultura de precision en Argentina. In ‘17° Curso de Agricultura de Precisión y Expo de Máquinas Precisas’. Mandredi, Argentina. pp. 7. (INTA: Mandredi, Argentina)

Mendes J, Pinho TM, Neves dos Santos F, Sousa JJ, Peres E, Boaventura-Cunha J, Cunha M, Morais R (2020) Smartphone applications targeting precision agriculture practices—a systematic review. Agronomy 10, 855
Smartphone applications targeting precision agriculture practices—a systematic review.Crossref | GoogleScholarGoogle Scholar |

Michels M, Bonke V, Musshoff O (2019) Understanding the adoption of smartphone apps in dairy herd management. Journal of Dairy Science 102, 9422–9434.
Understanding the adoption of smartphone apps in dairy herd management.Crossref | GoogleScholarGoogle Scholar |

Miles B, Bourennane E-B, Boucherkha S, Chikhi S (2020) A study of LoRaWAN protocol performance for IoT applications in smart agriculture. Computer Communications 164, 148–157.
A study of LoRaWAN protocol performance for IoT applications in smart agriculture.Crossref | GoogleScholarGoogle Scholar |

Molin JP, Bazame HC, Maldaner L, Corredo LdP, Martello M, Canata TF (2020) Precision agriculture and the digital contributions for site-specific management of the fields. Revista Ciência Agronômica 51, e20207720
Precision agriculture and the digital contributions for site-specific management of the fields.Crossref | GoogleScholarGoogle Scholar |

Monzon JP, Calviño PA, Sadras VO, Zubiaurre JB, Andrade FH (2018) Precision agriculture based on crop physiological principles improves whole-farm yield and profit: a case study. European Journal of Agronomy 99, 62–71.
Precision agriculture based on crop physiological principles improves whole-farm yield and profit: a case study.Crossref | GoogleScholarGoogle Scholar |

Nakasone E (2013) The role of price information in agricultural markets: experimental evidence from rural Peru. In ‘2013 Annual meeting’. pp. 1–69. (Agricultural and Applied Economics Association) https://doi.org/
| Crossref |

Naylor RL, Liska AJ, Burke MB, Falcon WP, Gaskell JC, Rozelle SD, Cassman KG (2007) The ripple effect: biofuels, food security, and the environment. Environment: Science and Policy for Sustainable Development 49, 30–43.
The ripple effect: biofuels, food security, and the environment.Crossref | GoogleScholarGoogle Scholar |

Odusola A (2021) Case studies from Latin America. In ‘Africa’s agricultural renaissance: from paradox to powerhouse’. (Ed. A Odusola) pp. 339–392. (Springer International Publishing: Cham, Switzerland) https://doi.org/
| Crossref |

Ortega RA, Santibáñez OA (2007) Determination of management zones in corn (Zea mays L.) based on soil fertility. Computers and Electronics in Agriculture 58, 49–59.
Determination of management zones in corn (Zea mays L.) based on soil fertility.Crossref | GoogleScholarGoogle Scholar |

Ortega R, Esser A (2003) Precision viticulture in Chile: experiences and potential impacts. In ‘International symposium on precision viticulture’. pp. 9–33. (Centro de Agricultura de Precisión, Universidad Católica de Chile: Santiago, Chile)

Palacios Duran D, Perez M, Seguel A, Fuentes P, Gajardo P, Prohens D, Eyzaguirre A, Lopez R, Alegría K (2021) Resultados Encuesta Agricultura Digital en Chile. Comisión de Innovación y Transformación Digital, Colegio de Ingenieros Agronomos de Chile, Colegio de Ingenieros Agronomos de Chile. Available at https://colegioingenierosagronomoschile.cl/comision-de-innovacion-y-transformacion-digital/

Patel H, Patel D (2016) Survey of android apps for agriculture sector. International Journal of Information Sciences and Techniques 6, 61–67.
Survey of android apps for agriculture sector.Crossref | GoogleScholarGoogle Scholar |

Peña T, Nickel L (2020) ‘Agtech en Latinoamerica.’ (Bolsa de Comercio de Rosario) Available at https://www.bcr.com.ar/es/print/pdf/node/79720

Phillips PWB, Relf-Eckstein J-A, Jobe G, Wixted B (2019) Configuring the new digital landscape in western Canadian agriculture. NJAS: Wageningen Journal of Life Sciences 90–91, 1–11.
Configuring the new digital landscape in western Canadian agriculture.Crossref | GoogleScholarGoogle Scholar |

Pivoto D, Barham B, Waquil PD, Foguesatto CR, Corte VFD, Zhang D, Talamini E (2019) Factors influencing the adoption of smart farming by Brazilian grain farmers. International Food and Agribusiness Management Review 22, 571–588.
Factors influencing the adoption of smart farming by Brazilian grain farmers.Crossref | GoogleScholarGoogle Scholar |

Puechagut MS, Velez JP, Barberis N, Giletta MA (2019) Rentabilidad de la Agricultura de Precisión: estimación de márgenes netos del cultivo de maíz con dosis fijas y variables de insumos. In ‘Anales de la Reunión Anual Asociación Argentina de Economía Agraria’. pp. 1–11. (Asociación Argentina de Economía Agraria) Available at https://inta.gob.ar/sites/default/files/inta_rentabilidad_de_la_agricultura_de_precision.pdf

Ramasubramanian L (2008) The digital revolution. In ‘Geographic information science and public participation’. Advances in Geographic Information Science. (Ed. L Ramasubramanian) pp. 19–32. (Springer: Berlin, Heidelberg) https://doi.org/
| Crossref |

R Core Team (2021) ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria) Available at https://www.R-project.org/

Rejeb A, Keogh JG, Zailani S, Treiblmaier H, Rejeb K (2020) Blockchain technology in the food industry: a review of potentials, challenges and future research directions. Logistics 4, 27
Blockchain technology in the food industry: a review of potentials, challenges and future research directions.Crossref | GoogleScholarGoogle Scholar |

Robertson M, Moore AD, Barry S, Lamb D, Henry D, Brown J, Darnell R, Gaire R, Grundy M, George A, Donohue R (2019) Digital agriculture. In ‘Australian agriculture in 2020: from conservation to automation’. pp. 389–403. (Agronomy Australia) Available at http://agronomyaustraliaproceedings.org/images/sampledata/specialpublications/Australian%20Agriculture%20in%202020.pdf

Roel A, Plant R (2000) Situación de los sistemas de información geográficos y la agricultura de precisión. 43–48.

Rotondi V, Billari F, Pesando L, Kashyap R (2020) ‘Digital rural gender divide in Latin America and the Caribbean.’ (Inter-American Institute for Cooperation on Agriculture) Available at https://ora.ox.ac.uk/objects/uuid:6650a8aa-ebae-4ff0-b95d-fb243f4108aa

Sadras VO, Denison RF (2016) Neither crop genetics nor crop management can be optimised. Field Crops Research 189, 75–83.
Neither crop genetics nor crop management can be optimised.Crossref | GoogleScholarGoogle Scholar |

Saleh AA, Ratajeski MA, Bertolet M (2014) Grey literature searching for health sciences systematic reviews: a prospective study of time spent and resources utilized. Evidence Based Library and Information Practice 9, 28–50.
Grey literature searching for health sciences systematic reviews: a prospective study of time spent and resources utilized.Crossref | GoogleScholarGoogle Scholar |

Schwalbert RA, Amado T, Corassa G, Pott LP, Prasad PVV, Ciampitti IA (2020) Satellite-based soybean yield forecast: integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agricultural and Forest Meteorology 284, 107886
Satellite-based soybean yield forecast: integrating machine learning and weather data for improving crop yield prediction in southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Shepherd M, Turner JA, Small B, Weheeler D (2020) Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. Journal of the Science of Food and Agriculture 100, 5083–5092.
Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution.Crossref | GoogleScholarGoogle Scholar |

Silveira F, Schandy J, Favaro F, Gómez A, Oliver JP, Steinfeld L, Barboni L (2021) ‘Redes de sensores inalámbricos para Internet de las cosas aplicado a la producción agrícola.’ (INIA: Montevideo) Available at http://www.inia.uy/Publicaciones/Paginas/publicacionAINFO-62454.aspx

Singh LK, Sutaliya JM, Rai M, Kalkavaniya K, Jat HS, Jat ML (2016) Productivity, profitability and partial factor productivity of nitrogen fertilizer in rice with Green-Seeker sensor based precision application: evidence from climate smart village in Haryana. In ‘4th International agronomy congress’. pp. 813–814. (Indian Society of Agronomy) Available at https://www.researchgate.net/publication/313772422

Smith MJ (2019) Getting value from artificial intelligence in agriculture. Animal Production Science 60, 46–54.
Getting value from artificial intelligence in agriculture.Crossref | GoogleScholarGoogle Scholar |

Sotomayor O, Ramírez E, Martínez H (2021) ‘Digitalización y cambio tecnológico en las mipymes agrícolas y agroindustriales en América Latina.’ (Comisión Económica para América Latina y el Caribe (CEPAL)/Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): Santiago, Chile) Available at https://repositorio.cepal.org/bitstream/handle/11362/46965/4/S2100283_es.pdf

Stafford JV (2000) Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research 76, 267–275.
Implementing precision agriculture in the 21st century.Crossref | GoogleScholarGoogle Scholar |

Stone AE (2020) Symposium review: The most important factors affecting adoption of precision dairy monitoring technologies. Journal of Dairy Science 103, 5740–5745.
Symposium review: The most important factors affecting adoption of precision dairy monitoring technologies.Crossref | GoogleScholarGoogle Scholar |

Tavares TR, Molin JP, Javadi SH, Carvalho HWPd, Mouazen AM (2021) Combined use of vis-NIR and XRF sensors for tropical soil fertility analysis: assessing different data fusion approaches. Sensors 21, 148
Combined use of vis-NIR and XRF sensors for tropical soil fertility analysis: assessing different data fusion approaches.Crossref | GoogleScholarGoogle Scholar |

Taylor K, Silver L (2019) ‘Smarthphone ownership is growing rapidly around the World, but not always equally.’ (Pew REsearch Center: Washington, DC, USA) Available at https://www.pewresearch.org/global/wp-content/uploads/sites/2/2019/02/Pew-Research-Center_Global-Technology-Use-2018_2019-02-05.pdf

Tenorio FAM, McLellan EL, Eagle AJ, Cassman KG, Andersen D, Krausnick M, Oaklund R, Thorburn J, Grassini P (2020) Benchmarking impact of nitrogen inputs on grain yield and environmental performance of producer fields in the western US Corn Belt. Agriculture, Ecosystems & Environment 294, 106865
Benchmarking impact of nitrogen inputs on grain yield and environmental performance of producer fields in the western US Corn Belt.Crossref | GoogleScholarGoogle Scholar |

Thompson NM, Bir C, Widmar DA, Mintert JR (2019) Farmer perceptions of precision agriculture technology benefits. Journal of Agricultural and Applied Economics 51, 142–163.
Farmer perceptions of precision agriculture technology benefits.Crossref | GoogleScholarGoogle Scholar |

Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418, 671–677.
Agricultural sustainability and intensive production practices.Crossref | GoogleScholarGoogle Scholar |

Timmermann C, Gerhards R, Kühbauch W (2003) The economic impact of site-specific weed control. Precision Agriculture 4, 249–260.
The economic impact of site-specific weed control.Crossref | GoogleScholarGoogle Scholar |

Tovar Soto JP, Solórzano Suárez JdlS, Badillo Rodríguez A, Rodríguez Cainaba GO (2019) Internet de las cosas aplicado a la agricultura: estado actual. Lámpsakos 22, 86–105.
Internet de las cosas aplicado a la agricultura: estado actual.Crossref | GoogleScholarGoogle Scholar |

Trendov NM, Varas S, Zeng M (2019) Digital technologies in agriculture and rural areas. Food and Agriculture Organization of the United Nations, Rome, Italy. Available at https://www.fao.org/3/ca4887en/ca4887en.pdf

Trevisan RG, Vilanova Júnior NS, Eitelwein MT, Molin JP (2018) Management of plant growth regulators in cotton using active crop canopy sensors. Agriculture 8, 101
Management of plant growth regulators in cotton using active crop canopy sensors.Crossref | GoogleScholarGoogle Scholar |

United Nations (2017) Project Breakthrough: Digital Agriculture, feeding the future. Disrupive Technology Executive Briefs. United Nations Global Compact. Available at https://breakthrough.unglobalcompact.org/site/assets/files/1332/hhw-16-0025-d_n_digital_agriculture.pdf

US FDA (2019) Deputy commissioner champions more digital, transparent food safety system. Available at https://www.fda.gov/food/conversations-experts-food-topics/deputy-commissioner-champions-more-digital-transparent-food-safety-system

Valente A, Silva S, Duarte D, Cabral Pinto F, Soares S (2020) Low-cost LoRaWAN node for agro-intelligence IoT. Electronics 9, 987
Low-cost LoRaWAN node for agro-intelligence IoT.Crossref | GoogleScholarGoogle Scholar |

van der Burg S, Wiseman L, Krkeljas J (2021) Trust in farm data sharing: reflections on the EU code of conduct for agricultural data sharing. Ethics and Information Technology 23, 185–198.
Trust in farm data sharing: reflections on the EU code of conduct for agricultural data sharing.Crossref | GoogleScholarGoogle Scholar |

Villalobos Mateluna P, Manríquez Ramírez R, Acevedo Opazo C, Ortega Farias S (2009) Alcance de la agricultura de precisión en Chile: estado del arte, ámbito de aplicación y perspectivas. Informe de resultados. Oficina de Estudios y Políticas Agrarias (Odepa), Ministerio de Agricultura, Gobierno de Chile, Chile. Available at https://www.odepa.gob.cl/wp-content/uploads/2009/07/AgriculturaDePrecision.pdf

Villarroel D, Scaramuzza F, Melchiori R (2020) ‘Gestión remota de datos a partir de aplicaciones y plataformas en el nuevo contexto de la agricultura digital.’ (INTA) Available at https://inta.gob.ar/sites/default/files/inta_gestion_remota_de_datos_-_encuesta_de_apps_agricultura_de_precision_inta_manfredi.pdf

Wingeyer A, Amado T, Pérez-Bidegain M, Studdert G, Varela C, Garcia F, Karlen D (2015) Soil quality impacts of current South American agricultural practices. Sustainability 7, 2213–2242.
Soil quality impacts of current South American agricultural practices.Crossref | GoogleScholarGoogle Scholar |

Zhai Z, Martínez JF, Beltran V, Martínez NL (2020) Decision support systems for agriculture 4.0: survey and challenges. Computers and Electronics in Agriculture 170, 105256
Decision support systems for agriculture 4.0: survey and challenges.Crossref | GoogleScholarGoogle Scholar |

Zhang Y, Baker D, Griffith G (2020) Product quality information in supply chains: a performance-linked conceptual framework applied to the Australian red meat industry. The International Journal of Logistics Management 31, 697–723.
Product quality information in supply chains: a performance-linked conceptual framework applied to the Australian red meat industry.Crossref | GoogleScholarGoogle Scholar |