Non-thermal plasma application improves germination, establishment and productivity of Gatton panic grass (Megathyrsus maximus) without compromising forage quality
María Cecilia Pérez-Pizá A # , Liliana Clausen B # , Ezequiel Cejas C , Matías Ferreyra C , Juan Camilo Chamorro-Garcés C , Brenda Fina C , Carla Zilli A , Pablo Vallecorsa A , Leandro Prevosto C * and Karina Balestrasse A *A Facultad de Agronomía, Universidad de Buenos Aires (UBA), Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín 4453, Buenos Aires, Argentina.
B Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Quimilí, Ruta Prov. N° 6 Km 9, Quimilí, Santiago del Estero, Argentina.
C Facultad Regional Venado Tuerto, Departamento de Ingeniería Electromecánica, Grupo de Descargas Eléctricas, Universidad Tecnológica Nacional, CONICET, Laprida 651, Venado Tuerto, Santa Fe, Argentina.
Handling Editor: Youhong Song
Crop & Pasture Science 73(10) 1188-1199 https://doi.org/10.1071/CP21619
Submitted: 29 July 2021 Accepted: 18 March 2022 Published: 2 May 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing
Abstract
Megathyrsus maximus (Gatton panic) is a tropical grass highly valued both for its use as forage and for its biofuel potential. A major constraint in establishing pastures of this cultivar is the low viability and germination of seeds and the poor initial seedling establishment. We used non-thermal plasma (NTP, partially ionised gas) as a novel technology to treat seeds of this grass, aiming to improve their quality (i.e. germination traits). We also followed the performance of seedlings grown from NTP-treated seeds under field conditions by assessing seedling establishment, biomass production and forage quality during the first regrowth period, which is the critical period for pasture establishment. Two NTP treatments were performed through dielectric barrier discharges employing N2 as carrier gas. Non-treated seeds served as the control. Results showed that the viability of NTP-treated seeds was, on average, 1.5-fold higher than the control, and that germination energy and germination percentage of treated seeds was superior to the control by 2.1-fold and 2.2-fold, respectively. A field experiment showed that seedling establishment parameters (dynamics of cumulative emergence, emergence coefficient, and weighted average emergence rate) and pasture early productivity (represented by shoot dry matter) were enhanced by NTP treatment (phenolic sheet–polyester film barrier and 3 min exposure), showing 1.4–2.6-fold higher values than the control, confirming the results of the laboratory assays. Although NTP markedly increased the shoot dry matter production of the pasture, which was related to higher tiller population density and greater tiller weight, it did not affect the forage quality of the plants grown in the field. We conclude that NTP technology is suitable to improve seed germination of Gatton panic, in turn leading to improvements in seedling establishment and biomass production under field conditions without compromising forage quality.
Keywords: early establishment, forage quality, germination, Megathyrsus maximus ‘Gatton Panic’, non-thermal plasma, pasture productivity, seed quality, yield components.
References
Adkins SW, Bellairs SM, Loch DS (2002) Seed dormancy mechanisms in warm season grass species. Euphytica 126, 13–20.| Seed dormancy mechanisms in warm season grass species.Crossref | GoogleScholarGoogle Scholar |
Agnusdei MG, Di Marco ON, Nenning FR, Aello MS (2012) Leaf blade nutritional quality of rhodes grass (Chloris gayana) as affected by leaf age and length. Crop & Pasture Science 62, 1098–1105.
| Leaf blade nutritional quality of rhodes grass (Chloris gayana) as affected by leaf age and length.Crossref | GoogleScholarGoogle Scholar |
Baldassini P, Despósito C, Piñeiro G, Paruelo JM (2018) Silvopastoral systems of the Chaco forests: effects of trees on grass growth. Journal of Arid Environments 156, 87–95.
| Silvopastoral systems of the Chaco forests: effects of trees on grass growth.Crossref | GoogleScholarGoogle Scholar |
Bateman J (1970) ‘Nutrición animal. Manual de métodos analíticos’, (Centro Regional de Ayuda Técnica: México City, México)
Berone GD (2016) Leaf expansion and leaf turnover of perennial C4 grasses growing at moderately low temperatures. Revista de la Facultad de Ciencias Agrarias UNCuyo 48, 69–82.
Boletta PE, Ravelo AC, Planchuelo AM, Grilli M (2006) Assessing deforestation in the Argentine Chaco. Forest Ecology and Management 228, 108–114.
| Assessing deforestation in the Argentine Chaco.Crossref | GoogleScholarGoogle Scholar |
Brown RF, Mayer DG (1988) Representing cumulative germination. A critical analysis of single-value germination indices. Annals of Botany 61, 117–125.
| Representing cumulative germination. A critical analysis of single-value germination indices.Crossref | GoogleScholarGoogle Scholar |
Cabrera CD, Sobrero MT, Pece M, Chaila S (2020) Effect of environmental factors on the germination of Megathyrsus maximus: an invasive weed in sugarcane in Argentina. Planta Daninha 38, e020216688
| Effect of environmental factors on the germination of Megathyrsus maximus: an invasive weed in sugarcane in Argentina.Crossref | GoogleScholarGoogle Scholar |
Cáceres DM (2015) Accumulation by dispossession and socio-environmental conflicts caused by the expansion of agribusiness in Argentina. Journal of Agrarian Change 15, 116–147.
| Accumulation by dispossession and socio-environmental conflicts caused by the expansion of agribusiness in Argentina.Crossref | GoogleScholarGoogle Scholar |
Callow MN, Lowe KF, Bowdler TM, Lowe SA, Gobius NR (2003) Dry matter yield, forage quality and persistence of tall fescue (Festuca arundinacea) cultivars compared with perennial ryegrass (Lolium perenne) in a subtropical environment. Australian Journal of Experimental Agriculture 43, 1093–1099.
| Dry matter yield, forage quality and persistence of tall fescue (Festuca arundinacea) cultivars compared with perennial ryegrass (Lolium perenne) in a subtropical environment.Crossref | GoogleScholarGoogle Scholar |
Cano CCP, Cecato U, do Canto MW, dos Santos GT, Galbeiro S, Martins EN, Távora RM (2004) Valor nutritivo do capim-Tanzânia (Panicum maximum Jacq. cv. Tanzânia-1) pastejado em diferentes alturas. Revista Brasileira de Zootecnia 33, 1959–1968.
| Valor nutritivo do capim-Tanzânia (Panicum maximum Jacq. cv. Tanzânia-1) pastejado em diferentes alturas.Crossref | GoogleScholarGoogle Scholar |
Chapman DF, Lee JM, Waghorn GC (2014) Interaction between plant physiology and pasture feeding value: a review. Crop & Pasture Science 65, 721–734.
| Interaction between plant physiology and pasture feeding value: a review.Crossref | GoogleScholarGoogle Scholar |
Clausen L, Castro CG, Ramirez NM (2020) Distribución estacional de la biomasa forrajera y calidad proteica de Gatton Panic, Brachiaria y Buffel grass en el Este de Santiago del Estero. Revista Argentina de Producción Animal 431, 135
Cui D, Yin Y, Wang J, Wang Z, Ding H, Ma R, Jiao Z (2019) Research on the physio-biochemical mechanism of non-thermal plasma-regulated seed germination and early seedling development in Arabidopsis. Frontiers in Plant Science 10, 1322
| Research on the physio-biochemical mechanism of non-thermal plasma-regulated seed germination and early seedling development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 31781132PubMed |
de Oliveira PRP, Humphreys LR (1986) Influence of level and timing of shading on seed production in Panicum maximum cv. Gratton. Australian Journal of Agricultural Research 37, 417–424.
| Influence of level and timing of shading on seed production in Panicum maximum cv. Gratton.Crossref | GoogleScholarGoogle Scholar |
Descheemaeker K, Llewellyn R, Moore A, Whitbread A (2014) Summer-growing perennial grasses are a potential new feed source in the low rainfall environment of southern Australia. Crop & Pasture Science 65, 1033–1043.
| Summer-growing perennial grasses are a potential new feed source in the low rainfall environment of southern Australia.Crossref | GoogleScholarGoogle Scholar |
Dobrin D, Magureanu M, Mandache NB, Ionita M-D (2015) The effect of non-thermal plasma treatment on wheat germination and early growth. Innovative Food Science & Emerging Technologies 29, 255–260.
| The effect of non-thermal plasma treatment on wheat germination and early growth.Crossref | GoogleScholarGoogle Scholar |
Donaghy DJ, Turner LR, Adamczewski KA (2008) Effect of defoliation management on water-soluble carbohydrate energy reserves, dry matter yields, and herbage quality of tall fescue. Agronomy Journal 100, 122–127.
| Effect of defoliation management on water-soluble carbohydrate energy reserves, dry matter yields, and herbage quality of tall fescue.Crossref | GoogleScholarGoogle Scholar |
Dutra JD, Rodrigues APDC, Pereira SR, Laura VA (2015) Heat treatment to overcome seeds dormancy of Panicum maximum cultivars (Poaceae). African Journal of Agricultural Research 10, 4616–4622.
| Heat treatment to overcome seeds dormancy of Panicum maximum cultivars (Poaceae).Crossref | GoogleScholarGoogle Scholar |
Feng J, Wang D, Shao C, Zhang L, Tang X (2018) Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress. Plasma Science and Technology 20, 035505
| Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress.Crossref | GoogleScholarGoogle Scholar |
Fernández PD, Kuemmerle T, Baumann M, Grau HR, Nasca JA, Radrizzani A, Gasparri NI (2020) Understanding the distribution of cattle production systems in the South American Chaco. Journal of Land Use Science 15, 52–68.
| Understanding the distribution of cattle production systems in the South American Chaco.Crossref | GoogleScholarGoogle Scholar |
Ferrando CA, Namur P, Blanco LJ, Berone GD, Vera TA (2005) Módulo experimental de cría sobre buffel grass-pastizal natural en los llanos de la Rioja. Revista Argentina de Producción Animal 25, 316–317.
| Módulo experimental de cría sobre buffel grass-pastizal natural en los llanos de la Rioja.Crossref | GoogleScholarGoogle Scholar |
Fumagalli AE, Kunst CR (2002) Producción de carne vacuna en el NOA: cómo mejorar la oferta forrajera de los sistemas de cría. IDIA XXI Revista de Información sobre Investigación y Desarrollo Agropecuario 2, 73–78.
Fumagalli A, Kunst C, Perez H (1997) Intensificación de la producción de carne en el NOA. In ‘Memoria del 1er. congreso nacional de producción intensiva de carne’. (Eds J Carrozzino, D Rearte) p. 261. (INTA, Forum Argentino de Forrajes: Buenos Aires, Argentina)
Gaitán JJ, Agüero W, Alvarez CA, et al. (2021) Cartografía del estado de degradación de las pasturas del Gran Chaco Americano. In ‘Informe Convenio de Asistencia Técnica INTA: the nature conservancy’. p. 38. (Instituto Nacional de Tecnología Agropecuaria: Buenos Aires, Argentina)
| Crossref |
Gasparri NI, Grau HR, Sacchi LV (2015) Determinants of the spatial distribution of cultivated land in the North Argentine Dry Chaco in a multi-decadal study. Journal of Arid Environments 123, 31–39.
| Determinants of the spatial distribution of cultivated land in the North Argentine Dry Chaco in a multi-decadal study.Crossref | GoogleScholarGoogle Scholar |
Giménez R (2016) Impacto hidrológico de distintas estrategias agrícolas en el Chaco Semiárido. PhD Thesis, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina.
Goering HK, Van Soest PJ (1970) ‘Forage fiber analyses (apparatus, reagents, procedures, and some applications)’, Agriculture Handbook No. 379. (Agricultural Research Service, USDA: Washington, DC, USA)
Grau HR, Torres R, Gasparri NI, Blendinger PG, Marinaro S, Macchi L (2015) Natural grasslands in the Chaco. A neglected ecosystem under threat by agriculture expansion and forest-oriented conservation policies. Journal of Arid Environments 123, 40–46.
| Natural grasslands in the Chaco. A neglected ecosystem under threat by agriculture expansion and forest-oriented conservation policies.Crossref | GoogleScholarGoogle Scholar |
Habermann E, Dias de Oliveira EA, Contin DR, Delvecchio G, Viciedo DO, de Moraes MA, de Mello Prado R, de Pinho Costa KA, Braga MR, Martinez CA (2019) Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. Physiologia Plantarum 165, 383–402.
| Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass.Crossref | GoogleScholarGoogle Scholar | 30525220PubMed |
Harty RL, Hopkinson JM, English BH, Alder J (1983) Germination, dormancy and longevity in stored seed of Panicum maximum. Seed Science and Technology 11, 341–351.
Hertwig C, Meneses N, Mathys A (2018) Cold atmospheric pressure plasma and low energy electron beam as alternative non-thermal decontamination technologies for dry food surfaces: a review. Trends in Food Science & Technology 77, 131–142.
| Cold atmospheric pressure plasma and low energy electron beam as alternative non-thermal decontamination technologies for dry food surfaces: a review.Crossref | GoogleScholarGoogle Scholar |
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high-resolution interpolated climate surfaces of global land areas. International Journal of Climatology 25, 1965–1978.
| Very high-resolution interpolated climate surfaces of global land areas.Crossref | GoogleScholarGoogle Scholar |
Holloway T, Steinbrecher T, Pérez M, Seville A, Stock D, Nakabayashi K, Leubner-Metzger G (2021) Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. New Phytologist 229, 2179–2191.
| Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses.Crossref | GoogleScholarGoogle Scholar |
Holubová Ľ, Kyzek S, Ďurovcová I, Fabová J, Horváthová E, Ševčovičová A, Gálová E (2020) Non-thermal plasma: a new green priming agent for plants? International Journal of Molecular Sciences 21, 9466
| Non-thermal plasma: a new green priming agent for plants?Crossref | GoogleScholarGoogle Scholar |
Hopkinson JM (1993) Tropical pasture establishment. Tropical Grasslands 27, 276–290.
Hopkinson JM, English BH (1985) Immaturity as a cause of low quality in seed of Panicum maximum. Journal of Applied Seed Production 3, 24–27.
INASE (2021) Normativa: Resolución N° 350/2011. Instituto Nacional de Semillas, Ministerio de Agricultura, Ganaderia y Pesca de la Nación, Argentina. Available at https://www.argentina.gob.ar/normativa/nacional/resoluci%C3%B3n-350-2011-188829/texto [Accessed 10 December 2021]
INDEC (2021) Complejos exportadores: primer semestre de 2021. Informe Técnico Comercio Exterior Vol. 5, No. 14. Instituto Nacional de Estadísticas y Censos, Buenos Aires, Argentina. Available at https://www.indec.gob.ar/uploads/informesdeprensa/complejos_09_216C11F7ABA3.pdf [Accessed 10 October 2021]
ISTA (2019) ‘International rules for seed testing. Rules 2019’, (International Seed Testing Association: Bassersdorf, Switzerland)
Jiang J, He X, Li L, Li J, Shao H, Xu Q, Ye R, Dong Y (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Science and Technology 16, 54
| Effect of cold plasma treatment on seed germination and growth of wheat.Crossref | GoogleScholarGoogle Scholar |
Klingebiel A, Montgomery P (1961) ‘Land-capability classification’, Agricultural Handbook 210. (Soil Conservation Service, USDA: Washington, DC, USA)
Kriz P, Olsan P, Havelka Z, Bartos P, Bohata A, Strejckova M, Curn V, Spatenka P (2017) Enhancement of the yield of rape seeds by plasma discharge and biological protection: field experiments. In ‘2017 international conference on optimization of electrical and electronic equipment (OPTIM) and 2017 international Aegean conference on electrical machines and power electronics (ACEMP)’. Brasov, Romania. pp. 1045–1050. (Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA)
| Crossref |
Kumar R, Thakur AK, Vikram A, Vaid A, Rane R (2017) Effect of plasma treatment on growth and yield of okra Abelmoschus esculentus (L.) under field conditions. International Journal of Bio-resource and Stress Management 8, 656–667.
| Effect of plasma treatment on growth and yield of okra Abelmoschus esculentus (L.) under field conditions.Crossref | GoogleScholarGoogle Scholar |
Kunst C, Monti E, Pérez H, Godoy J (2006) Assessment of the rangelands of southwestern Santiago del Estero, Argentina, for grazing management and research. Journal of Environmental Management 80, 248–265.
| Assessment of the rangelands of southwestern Santiago del Estero, Argentina, for grazing management and research.Crossref | GoogleScholarGoogle Scholar | 16376011PubMed |
Kunst C, Ledesma R, Godoy J (2012) Acumulación de biomasa aérea de Panicum maximum cv gatton panic en rolados. In ‘Actas 2do congreso nacional de sistemas silvopastoriles’. Santiago del Estero, Argentina. pp. 61–65. (Instituto Nacional de Tecnología Agropecuaria: Buenos Aires, Argentina)
| Crossref |
Lacerda MJR, Cabral JSR, Sales JF, Freitas KR, Fontes AJ (2010) Superação da dormência de sementes de Brachiaria brizantha cv. ‘Marandu’. Semina 31, 823–828.
| Superação da dormência de sementes de Brachiaria brizantha cv. ‘Marandu’.Crossref | GoogleScholarGoogle Scholar |
Li L, Li J, Shen M, Hou J, Shao H, Dong Y, Jiang J (2016) Improving seed germination and peanut yields by cold plasma treatment. Plasma Science and Technology 18, 1027
| Improving seed germination and peanut yields by cold plasma treatment.Crossref | GoogleScholarGoogle Scholar |
Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, Yuanhua D (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Scientific Reports 4, 5859
| Effects of cold plasma treatment on seed germination and seedling growth of soybean.Crossref | GoogleScholarGoogle Scholar | 25080862PubMed |
Minetti JL, Albarracín SA, Bobba ME, et al. (1999) ‘Atlas climático del noroeste argentino’, (Laboratorio Climatológico sudamericano, Fundación Zon Caldenius: Tucumán)
Moore GA, Albertsen TO, Ramankutty P, Nichols PGH, Titterington JW, Barrett-Lennard P (2014) Production and persistence of subtropical grasses in environments with Mediterranean climates. Crop & Pasture Science 65, 798–816.
| Production and persistence of subtropical grasses in environments with Mediterranean climates.Crossref | GoogleScholarGoogle Scholar |
Murray F, Baldi G, von Bernard T, Viglizzo EF, Jobbágy EG (2016) Productive performance of alternative land covers along aridity gradients: ecological, agronomic and economic perspectives. Agricultural Systems 149, 20–29.
| Productive performance of alternative land covers along aridity gradients: ecological, agronomic and economic perspectives.Crossref | GoogleScholarGoogle Scholar |
Olson DM, Dinerstein E, Wikramanayake ED, et al. (2001) Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial eco-regions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938.
| Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial eco-regions provides an innovative tool for conserving biodiversity.Crossref | GoogleScholarGoogle Scholar |
Pérez-Pizá MC, Prevosto L, Zilli C, Cejas E, Kelly H, Balestrasse K (2018) Effects of non-thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds. Innovative Food Science and Emerging Technologies 49, 82–91.
| Effects of non-thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds.Crossref | GoogleScholarGoogle Scholar |
Pérez-Pizá MC, Prevosto L, Grijalba PE, Zilli CG, Cejas E, Mancinelli B, Balestrasse KB (2019) Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon 5, e01495
| Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status.Crossref | GoogleScholarGoogle Scholar | 31011650PubMed |
Pérez-Pizá MC, Grijalba PE, Cejas E, Chamorro-Garcés JC, Ferreyra M, Zilli C, Vallecorsa P, Santa-Cruz D, Yannarelli G, Prevosto L, Balestrasse K (2021) Effects of non-thermal plasma technology on Diaporthe longicolla cultures and mechanisms involved. Pest Management Science 77, 2068–2077.
| Effects of non-thermal plasma technology on Diaporthe longicolla cultures and mechanisms involved.Crossref | GoogleScholarGoogle Scholar | 33342044PubMed |
Pipa AV, Koskulics J, Brandenburg R, Hoder T (2012) The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer. Review of Scientific Instruments 83, 115112
| The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer.Crossref | GoogleScholarGoogle Scholar |
Piquer-Rodríguez M, Butsic V, Gärtner P, Macchi L, Baumann M, Gavier Pizarro G, Volante JN, Gasparri IN, Kuemmerle T (2018) Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions. Applied Geography 91, 111–122.
| Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions.Crossref | GoogleScholarGoogle Scholar |
Puligundla P, Kim J-W, Mok C (2017) Effect of corona discharge plasma jet treatment on decontamination and sprouting of rapeseed (Brassica napus L.) seeds. Food Control 71, 376–382.
| Effect of corona discharge plasma jet treatment on decontamination and sprouting of rapeseed (Brassica napus L.) seeds.Crossref | GoogleScholarGoogle Scholar |
Ranal MA, de Santana DG (2006) How and why to measure the germination process? Brazilian Journal of Botany 29, 1–11.
| How and why to measure the germination process?Crossref | GoogleScholarGoogle Scholar |
Randeniya LK, de Groot GJJB (2015) Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review. Plasma Processes and Polymers 12, 608–623.
| Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review.Crossref | GoogleScholarGoogle Scholar |
Richard GA, Cerino MC, Pensiero JF, Zabala JM (2016) Seed dormancy and germination in different populations of the Argentinean endemic halophyte grass, Sporobolus phleoides (Poaceae: Chloridoideae). Australian Journal of Botany 64, 492–500.
| Seed dormancy and germination in different populations of the Argentinean endemic halophyte grass, Sporobolus phleoides (Poaceae: Chloridoideae).Crossref | GoogleScholarGoogle Scholar |
Šerá B, Šerý M (2018) Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains. Plasma Science and Technology 20, 044012
| Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains.Crossref | GoogleScholarGoogle Scholar |
Šerá B, Šerý M, Štrañák V, Špatenka P, Tichý M (2009) Does cold plasma affect breaking dormancy and seed germination? A study on seeds of lamb’s quarters (Chenopodium album agg.). Plasma Science and Technology 11, 750–754.
| Does cold plasma affect breaking dormancy and seed germination? A study on seeds of lamb’s quarters (Chenopodium album agg.).Crossref | GoogleScholarGoogle Scholar |
Schnellmann LP, Verdoljak OJJ, Bernardis A, Martínez-González JC, Castillo-Rodríguez SP, Limas-Martínez AG (2020) Cutting frequency and height on the quality of Megathyrsus maximus (cv. Gatton panic). Ciencia y Tecnología Agropecuaria 21, e1402
| Cutting frequency and height on the quality of Megathyrsus maximus (cv. Gatton panic).Crossref | GoogleScholarGoogle Scholar |
Soil Conservation Service (1972) ‘National engineering handbook. Section 4: Hydrology.’ p. 762. (Department of Agriculture: Washington, DC, USA)
Soil Survey Staff (2010) ‘Keys to Soil Taxonomy’, (United States Department of Agriculture, Soil Conservation Service: Washington, DC, USA)
Song L, Kalms I (2007) Improving germination of tropical grasses with new seed-coating technology. Tropical Grasslands 41, 242
Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chemistry and Plasma Processing 35, 659–676.
| Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.).Crossref | GoogleScholarGoogle Scholar |
Treboux J, Terré E (2021) Consumo de carne en Argentina: dinámica y tendencia. Informativo Semanal Mercados. Bolsa de Comercio de Rosario (BCR), Rosario, Argentina. Available at https://www.bcr.com.ar/es/print/pdf/node/86173 [Accessed 10 October 2021]
Viglizzo EF, Frank FC, Carreño LV, Jobbágy EG, Pereyra H, Clatt J, Pincén D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biology 17, 959–973.
| Ecological and environmental footprint of 50 years of agricultural expansion in Argentina.Crossref | GoogleScholarGoogle Scholar |
Volante JN, Mosciaro MJ, Gavier-Pizarro GI, Paruelo JM (2016) Agricultural expansion in the semiarid Chaco: poorly selective contagious advance. Land Use Policy 55, 154–165.
| Agricultural expansion in the semiarid Chaco: poorly selective contagious advance.Crossref | GoogleScholarGoogle Scholar |
Who E, Kuiters AT, Tolsma DJ (1991) Dormancy of annual and perennial grasses from a savannah of southeastern Botswana. Acta Oecologica 12, 727–739.