Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Blackleg disease of canola in Australia

A. P. Van De Wouw A , S. J. Marcroft B and B. J. Howlett A
+ Author Affiliations
- Author Affiliations

A School of BioSciences, The University of Melbourne, Vic. 3010, Australia.

B Marcroft Grains Pathology, Grains Innovation Park, Horsham, Vic. 3400, Australia.

C Corresponding author. Email: apvdw2@unimelb.edu.au

Crop and Pasture Science 67(4) 273-283 https://doi.org/10.1071/CP15221
Submitted: 3 July 2015  Accepted: 30 September 2015   Published: 1 March 2016

Abstract

Blackleg disease caused by the fungus Leptosphaeria maculans is the most important disease of canola worldwide. The impact of this disease on the development of the Australian canola industry, particularly over the last 20 years, is discussed. Deployment of a range of disease control measures has resulted in a thriving canola industry with production now approaching 4 million tonnes annually. Discoveries about disease mechanisms and key plant and fungal genes are described. Analysis of the L. maculans genome sequence has enabled an understanding of how fungal populations can evolve rapidly to overcome disease resistance bred into canola cultivars.

Additional keywords: Brassica napus, avirulence, resistance.


References

Abang MM, Baum M, Ceccarelli S, Grando S, Linde CC, Yahyaoui A, Zhan J, McDonald BA (2006) Differential selection on Rhynchosporium secalis during the parasitic and saprophytic phases in the barley scald disease cycle. Phytopathology 96, 1214–1222.
Differential selection on Rhynchosporium secalis during the parasitic and saprophytic phases in the barley scald disease cycle.Crossref | GoogleScholarGoogle Scholar | 18943958PubMed |

ABARES (2013) Agricultural commodity statistics 2013. ABARES project 43047. Australian Bureau of Agricultural and Resource Economics and Sciences, December, Canberra, ACT.

Balesdent MH, Attard A, Kuhn ML, Rouxel T (2002) New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology 92, 1122–1133.
New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlGitrg%3D&md5=cf92d61f66cad66051786b7305912dd4CAS | 18944223PubMed |

Balesdent MH, Barbetti MJ, Li H, Sivasithamparam K, Gout L, Rouxel T (2005) Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology 95, 1061–1071.
Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVemt7jL&md5=42ebb816aa3a3d968bbee69848aee056CAS | 18943304PubMed |

Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chevre AM, Leflon M, Rouxel T (2013) The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytologist 198, 887–898.
The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVyrs7g%3D&md5=a359c55176fa15ae816ac65e03676406CAS | 23406519PubMed |

Ballinger DJ, Salisbury P, Kollmorgen JF, Potter TD, Conventry DR (1988) Evaluation of rates of flutriafol for control of blackleg of rapeseed. Australian Journal of Experimental Agriculture 28, 517–519.
Evaluation of rates of flutriafol for control of blackleg of rapeseed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXptVCqsg%3D%3D&md5=0239e60ad9724c5878aaad39467c7e9eCAS |

Bokor A, Barbetti M, Brown AGP, MacNish GC, Wood PM (1975) Blackleg of rapeseed. Journal of Agriculture, Western Australia 16, 7–10.

Brun H, Levivier S, Somda I, Ruer D, Renard M, Chevre AM (2000) A field method for evaluating the potential durability of new resistance sources: application to the Leptosphaeria maculans-Brassica napus pathosystem. Phytopathology 90, 961–966.
A field method for evaluating the potential durability of new resistance sources: application to the Leptosphaeria maculans-Brassica napus pathosystem.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjjslyitA%3D%3D&md5=490ec21f7aeba2932ebf5fda041c76a0CAS | 18944519PubMed |

Brun H, Chevre AM, Fitt BD, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytologist 185, 285–299.
Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 19814776PubMed |

Chen CY, Howlett BJ (1996) Rapid necrosis of gaurd cells is associated with the arrest of fungal growth in leaves of Indian mustard (Brassica juncea) inoculated with avirulent isolates of Leptosphaeria maculans. Physiological and Molecular Plant Pathology 48, 73–81.
Rapid necrosis of gaurd cells is associated with the arrest of fungal growth in leaves of Indian mustard (Brassica juncea) inoculated with avirulent isolates of Leptosphaeria maculans.Crossref | GoogleScholarGoogle Scholar |

Chèvre AM, Barrett P, Eber F, Dupuy P, Brun H, Tanguy X, Renard M (1997) Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theoretical and Applied Genetics 95, 1104–1111.
Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression.Crossref | GoogleScholarGoogle Scholar |

Chin KM, Wolfe MS (1984) Selection of Erysiphe graminis in pure and mixed stands of barley. Plant Pathology 33, 535–546.
Selection of Erysiphe graminis in pure and mixed stands of barley.Crossref | GoogleScholarGoogle Scholar |

Christianson JA, Rimmer SR, Good AG, Lydiate DJ (2006) Mapping genes for resistance to Leptosphaeria maculans in Brassica juncea. Genome 49, 30–41.
Mapping genes for resistance to Leptosphaeria maculans in Brassica juncea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVGgsbc%3D&md5=e3236111853ec7a83c1f347b08d079deCAS | 16462899PubMed |

Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crops Research 104, 103–111.
Genetic diversity in Australian canola and implications for crop breeding for changing future environments.Crossref | GoogleScholarGoogle Scholar |

Crouch JH, Lewis BG, Mithen RF (1994) The effect of A genome substitution on the resistance of Brassica napus to infection by Leptosphaeria maculans. Plant Breeding 112, 265–278.
The effect of A genome substitution on the resistance of Brassica napus to infection by Leptosphaeria maculans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhslyrurc%3D&md5=2154cdd6b92e7dce4d66d0d58530bea4CAS |

Daverdin G, Rouxel T, Gout L, Aubertot JN, Fudal I, Meyer M, Parlange F, Carpezat J, Balesdent MH (2012) Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLoS Pathogens 8, e1003020
Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCis7rJ&md5=d9aad45bc6a83debe48866c64186ff6aCAS | 23144620PubMed |

de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2013) Redisposition of Phoma-like anamorphs in Pleosporales. Studies in Mycology 75, 1–36.
Redisposition of Phoma-like anamorphs in Pleosporales.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sbmtlGgtg%3D%3D&md5=7a6e62b9e985c4ae7bac5f759cc3a4d4CAS | 24014897PubMed |

Delourme R, Pilet-Nayel ML, Archipiano M, Horvais R, Tanguy X, Rouxel T, Brun H, Renard M, Balesdent MH (2004) A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology 94, 578–583.
A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFynurs%3D&md5=8cd2253d7f2bc6ab1b2075a0545400a4CAS | 18943482PubMed |

Delourme R, Chevre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, Rimmer SR (2006) Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). European Journal of Plant Pathology 114, 41–52.
Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus).Crossref | GoogleScholarGoogle Scholar |

Delourme R, Bousset L, Ermel M, Duffe P, Besnard AL, Marquer B, Fudal I, Linglin J, Chadoeuf J, Brun H (2014) Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape. Infection, Genetics and Evolution 27, 490–499.
Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVOkt70%3D&md5=be52151a8eaf635208bdcb1207c8d4edCAS | 24394446PubMed |

Elliott VL, Marcroft SJ, Howlett BJ, Van de Wouw AP (2016) Gene-for-gene resistance is expressed in cotyledons, leaves and pods, but not during late stages of stem colonization in the Leptosphaeria maculansBrassica napus pathosystem. Plant Breeding
Gene-for-gene resistance is expressed in cotyledons, leaves and pods, but not during late stages of stem colonization in the Leptosphaeria maculansBrassica napus pathosystem.Crossref | GoogleScholarGoogle Scholar |

Elliott VL (2009) Host pathogen interactions of Brassica juncea and Brassica napus with blackleg (Leptosphaeria spp.) in south eastern Australia. University of Melbourne, Melbourne, Vic., Australia.

Finckh MR, Gacek ES, Czembor HJ, Wolfe MS (1999) Host frequency and density effects on powdery mildew and yield in mixtures of barley cultivars. Plant Pathology 48, 807–816.
Host frequency and density effects on powdery mildew and yield in mixtures of barley cultivars.Crossref | GoogleScholarGoogle Scholar |

Flor HH (1955) Host-parasite interactions in flax rust—its genetic and other implications. Phytopathology 45, 680–685.

Fudal I, Ross S, Gout L, Blaise F, Kuhn ML, Eckert MR, Cattolico L, Bernard-Samain S, Balesdent MH, Rouxel T (2007) Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Molecular Plant-Microbe Interactions 20, 459–470.
Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVyksb4%3D&md5=e1637f46b94470b7fb956b7060ceb1d6CAS | 17427816PubMed |

Ghanbarnia K, Lydiate DJ, Rimmer SR, Li G, Kutcher R, Larkan NJ, McVetty PBE, Fernando DWG (2012) Genetic mapping of the Leptosphaeria maculans avirulence gene corresponding to the LepR1 resistance gene of Brassica napus. Theoretical and Applied Genetics 124, 505–513.
Genetic mapping of the Leptosphaeria maculans avirulence gene corresponding to the LepR1 resistance gene of Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOmtrk%3D&md5=f9c63c34aa6140fb092df194d6ea34e3CAS | 22038486PubMed |

Ghanbarnia K, Fudal I, Larkan NJ, Links MG, Balesdent M, Profotova B, Fernando DWG, Rouxel T, Borhan H (2015) Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Molecular Plant Pathology 16, 699–709.

Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L, Balesdent MH, Rouxel T (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Molecular Microbiology 60, 67–80.
Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsleht7Y%3D&md5=8d230d9ba94041d480278583fbd6b89aCAS | 16556221PubMed |

Gout L, Kuhn ML, Vincenot L, Bernard-Samain S, Cattolico L, Barbetti M, Moreno-Rico O, Balesdent MH, Rouxel T (2007) Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen Leptosphaeria maculans. Environmental Microbiology 9, 2978–2992.
Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen Leptosphaeria maculans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslOksQ%3D%3D&md5=e31c114ae4c60c36df623746dcbee75eCAS | 17991027PubMed |

Grandaubert J, Lowe RG, Soyer JL, Schoch CL, Van de Wouw AP, Fudal I, Robbertse B, Lapalu N, Links MG, Ollivier B, Linglin J, Barbe V, Mangenot S, Cruaud C, Borhan H, Howlett BJ, Balesdent MH, Rouxel T (2014) Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculansLeptosphaeria biglobosa species complex of fungal pathogens. BMC Genomics 15, 891
Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculansLeptosphaeria biglobosa species complex of fungal pathogens.Crossref | GoogleScholarGoogle Scholar | 25306241PubMed |

Hammond KE, Lewis BG (1987) Differential responses of oilseed rape leaves to Leptosphaeria maculans. Transactions of the British Mycological Society 88, 329–333.
Differential responses of oilseed rape leaves to Leptosphaeria maculans.Crossref | GoogleScholarGoogle Scholar |

Hammond KE, Lewis BG, Musa TM (1985) A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathology 34, 557–565.
A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans.Crossref | GoogleScholarGoogle Scholar |

Idnurm A, Howlett BJ (2003) Analysis of loss of pathogenicity mutants reveals that repeat-induced point mutations can occur in the Dothideomycete Leptosphaeria maculans. Fungal Genetics and Biology 39, 31–37.
Analysis of loss of pathogenicity mutants reveals that repeat-induced point mutations can occur in the Dothideomycete Leptosphaeria maculans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVejtrs%3D&md5=931ce8a817ca51e90eb0b42ca6f33c0aCAS | 12742061PubMed |

Keri M, van den Berg CGJ, McVetty PBE, Rimmer SR (1997) Inheritance of resistance to Leptosphaeria maculans in Brassica juncea. Phytopathology 87, 594–598.
Inheritance of resistance to Leptosphaeria maculans in Brassica juncea.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjjvVeksA%3D%3D&md5=c96bbf86f796e21c723498bb297b2adfCAS | 18945075PubMed |

Kirkegaard JA, Robertson MJ, Hamblin P, Sprague SJ (2006) Effect of blackleg and sclerotinia stem rot on canola yield in the high rainfall zone of southern New South Wales, Australia. Australian Journal of Agricultural Research 57, 201–212.
Effect of blackleg and sclerotinia stem rot on canola yield in the high rainfall zone of southern New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Kirkegaard JA, Sprague SJ, Dove H, Kelman WM, Marcroft SJ, Lieschke A, Howe GN, Graham JM (2008) Dual-purpose canola—a new opportunity in mixed farming systems. Australian Journal of Agricultural Research 59, 291–302.
Dual-purpose canola—a new opportunity in mixed farming systems.Crossref | GoogleScholarGoogle Scholar |

Larkan NJ, Lydiate DJ, Parkin IA, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytologist 197, 595–605.
The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVynsrrN&md5=f59c8081ac7b6d3acafc2a0110ad9f79CAS | 23206118PubMed |

Larkan NJ, Ma L, Borhan H (2015) The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnology Journal.
The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus.Crossref | GoogleScholarGoogle Scholar | 25644479PubMed |

Light KA, Gororo NN, Salisbury PA (2011) Usefulness of winter canola (Brassica napus) race-specific resitsance genes against blackleg (causal agent Leptosphaeria maculans) in southern Australian growing conditions. Crop & Pasture Science 62, 162–168.
Usefulness of winter canola (Brassica napus) race-specific resitsance genes against blackleg (causal agent Leptosphaeria maculans) in southern Australian growing conditions.Crossref | GoogleScholarGoogle Scholar |

Long Y, Wang Z, Sun Z, Fernando DWG, McVetty PBE, Li G (2011) Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus cultivar ‘Surpass400’. Theoretical and Applied Genetics 122, 1223–1231.
Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus cultivar ‘Surpass400’.Crossref | GoogleScholarGoogle Scholar | 21258998PubMed |

Marcroft SJ, Potter TD (2008) The fungicide fluquinconazole applied as a seed dressing to canola reduces Leptosphaeria maculans (blackleg) severity in south-eastern Australia. Australasian Plant Pathology 37, 396–401.
The fungicide fluquinconazole applied as a seed dressing to canola reduces Leptosphaeria maculans (blackleg) severity in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVWhtLg%3D&md5=ad13a6900ac0b1d5d0c94af7fdc9fd04CAS |

Marcroft SJ, Sprague SJ, Pymer SJ, Salisbury PA, Howlett BJ (2004) Crop isolation, not extended rotation length, reduces blackleg (Leptosphaeria maculans) severity of canola (Brassica napus) in south-eastern Australia. Australian Journal of Experimental Agriculture 44, 601–606.
Crop isolation, not extended rotation length, reduces blackleg (Leptosphaeria maculans) severity of canola (Brassica napus) in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Marcroft SJ, Elliott VL, Cozijnsen AJ, Salisbury PA, Howlett BJ, Van de Wouw AP (2012a) Identifying resistance genes to Leptosphaeria maculans in Australian Brassica napus cultivars based on reactions to isolates with known avirulence genotypes. Crop & Pasture Science 63, 338–350.
Identifying resistance genes to Leptosphaeria maculans in Australian Brassica napus cultivars based on reactions to isolates with known avirulence genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVWltL0%3D&md5=6d3d63d97195726982cfb2211872545cCAS |

Marcroft SJ, Van de Wouw AP, Salisbury PA, Potter TD, Howlett BJ (2012b) Rotation of canola (Brassica napus) cultivars with different complements of blackleg resistance genes decreases disease severity. Plant Pathology 61, 934–944.
Rotation of canola (Brassica napus) cultivars with different complements of blackleg resistance genes decreases disease severity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSkurjJ&md5=dab981b7fa991c7b9907a505402a8948CAS |

Mendes-Pereira E, Balesdent MH, Brun H, Rouxel T (2003) Molecular phylogeny of the Leptosphaeria maculans-L. biglobosa species complex. Mycological Research 107, 1287–1304.
Molecular phylogeny of the Leptosphaeria maculans-L. biglobosa species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVKltA%3D%3D&md5=b76cd059d55702cbc267ba80dd266348CAS | 15000231PubMed |

Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology 40, 381–410.
Use of multiline cultivars and cultivar mixtures for disease management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1Cltbk%3D&md5=ca58ed10673ec3ba3d916b72b30592e0CAS | 12147765PubMed |

Newton AC, Guy DC, Bengough AG, Gordon DC, McKenzie BM, Sun B, Valentine TA, Hallett PD (2012) Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley. Field Crops Research 128, 91–100.
Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley.Crossref | GoogleScholarGoogle Scholar |

Parlange F, Daverdin G, Fudal I, Kuhn ML, Balesdent MH, Blaise F, Grezes-Besset B, Rouxel T (2009) Leptosphaeria maculans avirulence gene AvrLm4–7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Molecular Microbiology 71, 851–863.
Leptosphaeria maculans avirulence gene AvrLm4–7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFaqtb0%3D&md5=6235a7bf95fb046038178954031ca9d2CAS | 19170874PubMed |

Plummer KM, Dunse K, Howlett BJ (1994) Non-aggressive strains of the Blackleg fungus, Leptosphaeria maulans, are present in Australia and can be distinguished from aggressive strains by molecular analysis. Australian Journal of Botany 42, 1–8.
Non-aggressive strains of the Blackleg fungus, Leptosphaeria maulans, are present in Australia and can be distinguished from aggressive strains by molecular analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt12ktb0%3D&md5=36a519bdc6598171dfa7087b27bd4924CAS |

Price CL, Parker JE, Warrilow AGS, Kelly DE, Kelly SL (2015) Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens. Pest Management Science 71, 1054–1058.
Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosFOju7c%3D&md5=2010baac2a9425a9d07c8c0133b99661CAS | 25914201PubMed |

Rimmer SR (2006) Resistance genes to Leptosphaeria maculans in Brassica napus. Canadian Journal of Plant Pathology 28, S288–S297.
Resistance genes to Leptosphaeria maculans in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Gqtrc%3D&md5=1f1ba21e40f4f060bdc5c742d7da5cd2CAS |

Rouxel T, Balesdent MH (2005) The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era. Molecular Plant Pathology 6, 225–241.
The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVCrt78%3D&md5=b95677f3fb9e5b9a2d4f94952f949049CAS | 20565653PubMed |

Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourme R, Schmit J, Balesdent MH (2003a) A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. European Journal of Plant Pathology 109, 871–881.
A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotV2jsbg%3D&md5=20f87fd671111ca4925b1c7895fc8e6dCAS |

Rouxel T, Willner E, Coudard L, Balesdent MH (2003b) Screening and identification of resistance to Leptosphaeria maculans (stem canker) in Brassica napus accessions. Euphytica 133, 219–231.
Screening and identification of resistance to Leptosphaeria maculans (stem canker) in Brassica napus accessions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVaisbg%3D&md5=204b668b82ac299ba08d1659e8b3f7c7CAS |

Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, et al (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nature Communications 2, 202

Saal B, Brun H, Glais I, Struss D (2004) Identification of a Brassica juncea-derived recessive gene conferring resistance to Leptosphaeria maculans in oilseed rape. Plant Breeding 123, 505–511.
Identification of a Brassica juncea-derived recessive gene conferring resistance to Leptosphaeria maculans in oilseed rape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVCisA%3D%3D&md5=e6663d7d5d1fb416e9ce2f1a2897f3b2CAS |

Salisbury P, Ballinger DJ, Wratten N, Plummer KM, Howlett BJ (1995) Blackleg disease on oilseed Brassicas in Australia—a review. Australian Journal of Experimental Agriculture 35, 665–674.
Blackleg disease on oilseed Brassicas in Australia—a review.Crossref | GoogleScholarGoogle Scholar |

Shoemaker RA, Brun H (2001) The teleomorph of the weakly aggressive segregate of Leptosphaeria maculans. Canadian Journal of Botany 79, 412–419.
The teleomorph of the weakly aggressive segregate of Leptosphaeria maculans.Crossref | GoogleScholarGoogle Scholar |

Sprague SJ, Balesdent MH, Brun H, Hayden HL, Marcroft SJ, Pinochet X, Rouxel T, Howlett BJ (2006a) Major gene resistance in Brassica napus (oilseed rape) is overcome by changes in virulence of populations of Leptosphaeria maculans in France and Australia. European Journal of Plant Pathology 114, 33–40.
Major gene resistance in Brassica napus (oilseed rape) is overcome by changes in virulence of populations of Leptosphaeria maculans in France and Australia.Crossref | GoogleScholarGoogle Scholar |

Sprague SJ, Marcroft SJ, Hayden HL, Howlett BJ (2006b) Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in southeastern Australia. Plant Disease 90, 190–198.
Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Sprague SJ, Watt M, Kirkegaard JA, Howlett BJ (2007) Pathways of infection of Brassica napus roots by Leptosphaeria maculans. New Phytologist 176, 211–222.
Pathways of infection of Brassica napus roots by Leptosphaeria maculans.Crossref | GoogleScholarGoogle Scholar | 17696980PubMed |

Sprague SJ, Kirkegaard JA, Graham JM, Dove H, Kelman WM (2014) Crop and livestock production for dual-purpose winter canola (Brassica napus) in the high-rainfall zone of south-eastern Australia. Field Crops Research 156, 30–39.
Crop and livestock production for dual-purpose winter canola (Brassica napus) in the high-rainfall zone of south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Stuthman DD, Leonard JJ, Miller-Garvin J (2007) Breeding crops for durable resistance to disease. Advances in Agronomy 95, 319–367.
Breeding crops for durable resistance to disease.Crossref | GoogleScholarGoogle Scholar |

Taylor JW (2011) One fungus = one name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus 2, 113–120.
One fungus = one name: DNA and fungal nomenclature twenty years after PCR.Crossref | GoogleScholarGoogle Scholar | 22679595PubMed |

Van de Wouw AP, Thomas VL, Cozijnsen AJ, Marcroft SJ, Salisbury PA, Howlett BJ (2008) Identification of Leptosphaeria biglobosa ‘canadensis’ on Brassica juncea stubble from northern New South Wales. Australasian Plant Disease Notes 3, 124–128.
Identification of Leptosphaeria biglobosa ‘canadensis’ on Brassica juncea stubble from northern New South Wales.Crossref | GoogleScholarGoogle Scholar |

Van de Wouw AP, Marcroft SJ, Barbetti MJ, Hua L, Salisbury PA, Gout L, Rouxel T, Howlett BJ, Balesdent MH (2009) Dual control of avirulence in Leptosphaeria maculans towards a Brassica napus cultivar with ‘sylvestris-derived’ resistance suggests involvement of two resistance genes. Plant Pathology 58, 305–313.
Dual control of avirulence in Leptosphaeria maculans towards a Brassica napus cultivar with ‘sylvestris-derived’ resistance suggests involvement of two resistance genes.Crossref | GoogleScholarGoogle Scholar |

Van de Wouw AP, Cozijnsen AJ, Hane JK, Brunner PC, McDonald BA, Oliver RP, Howlett BJ (2010a) Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathogens 6, e1001180
Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants.Crossref | GoogleScholarGoogle Scholar | 21079787PubMed |

Van de Wouw AP, Stonard JF, Howlett BJ, West JS, Fitt BD, Atkins SD (2010b) Determining frequencies of avirulent alleles in airborne Leptosphaeria maculans inoculum using quantitative PCR. Plant Pathology 59, 809–818.
Determining frequencies of avirulent alleles in airborne Leptosphaeria maculans inoculum using quantitative PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yhurzL&md5=bd0b35125b3a906d5dd339a370f154b2CAS |

Van de Wouw AP, Elliott CE, Howlett BJ (2014a) Transformation of fungal isolates with avirulence genes provides tools for identification of corresponding resistance genes in the host plant. European Journal of Plant Pathology 140, 875–882.
Transformation of fungal isolates with avirulence genes provides tools for identification of corresponding resistance genes in the host plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlarsbzK&md5=8034e73aef8de480396851d334ba9bc1CAS |

Van de Wouw AP, Lowe RGT, Elliott CE, Dubois DJ, Howlett BJ (2014b) An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars. Molecular Plant Pathology 15, 523–530.
An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslCksr8%3D&md5=68c708ad35cda74220198d2731d2a8e2CAS | 24279453PubMed |

Van de Wouw AP, Marcroft SJ, Ware A, Lindbeck K, Khangura R, Howlett BJ (2014c) Breakdown of resistance to the fungal disease, blackleg, is averted in commercial canola (Brassica napus) crops in Australia. Field Crops Research 166, 144–151.
Breakdown of resistance to the fungal disease, blackleg, is averted in commercial canola (Brassica napus) crops in Australia.Crossref | GoogleScholarGoogle Scholar |

Vincenot L, Balesdent MH, Li H, Barbetti MJ, Sivasithamparam K, Gout L, Rouxel T (2008) Occurrence of a new subclade of Leptosphaeria biglobosa in Western Australia. Phytopathology 98, 321–329.
Occurrence of a new subclade of Leptosphaeria biglobosa in Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1ertbs%3D&md5=0e61342b6c9327af53f745176500c2a5CAS | 18944083PubMed |

Voigt K, Cozijnsen AJ, Kroymann J, Poggeler S, Howlett BJ (2005) Phylogenetic relationships between members of the crucifer pathogenic Leptosphaeria maculans species complex as shown by mating type (MAT1-2), actin, and beta-tubulin sequences. Molecular Phylogenetics and Evolution 37, 541–557.
Phylogenetic relationships between members of the crucifer pathogenic Leptosphaeria maculans species complex as shown by mating type (MAT1-2), actin, and beta-tubulin sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWhtLzE&md5=eedddb566e6b923d33a89c1c50e19334CAS | 16122948PubMed |

Williams R, Fitt BDL (1999) Differentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape. Plant Pathology 48, 161–175.
Differentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape.Crossref | GoogleScholarGoogle Scholar |

Wood PM, Barbetti MJ (1977) The role of seed infection in the spread of blackleg of rape in Western Australia. Australian Journal of Experimental Agriculture and Animal Husbandry 17, 1040–1044.
The role of seed infection in the spread of blackleg of rape in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Yu F, Lydiate DJ, Rimmer SR (2005) Identification of two novel genes for blackleg resistance in Brassica napus. Theoretical and Applied Genetics 110, 969–979.
Identification of two novel genes for blackleg resistance in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislantrY%3D&md5=1cecc554fc77715e176dfb423f52ed05CAS | 15798929PubMed |

Yu F, Lydiate DJ, Rimmer SR (2008) Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris. Genome 51, 64–72.
Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1arsrw%3D&md5=86d2e3e0ef0b713e5be14215195b25edCAS | 18356940PubMed |

Yu F, Gugel RK, Kutcher R, Peng G, Rimmer SR (2013) Identification and mapping of a novel blackleg resistance locus LepR4 in teh progenies from Brassica napus × B. rapa subsp. sylvestris. Theoretical and Applied Genetics 126, 307–315.
Identification and mapping of a novel blackleg resistance locus LepR4 in teh progenies from Brassica napus × B. rapa subsp. sylvestris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslakurc%3D&md5=20c6c7946425e23f050b1fbb6ddcbe9eCAS | 22733446PubMed |

Zhan J, McDonald BA (2013) Experimental measures of pathogen competition and relative fitness. Annual Review of Phytopathology 51, 131–153.
Experimental measures of pathogen competition and relative fitness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOhtrvI&md5=76aec2bdd2a7d0511b217e0c24bec030CAS | 23767846PubMed |

Zhang X, White RP, Demir E, Jedryczka M, Lange RM, Islam M, Li ZQ, Huang YJ, Hall AM, Zhou G, Wang Z, Cai X, Skelsey P, Fitt BDL (2014) Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on oilseed rape crops in China. Plant Pathology 63, 598–612.
Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on oilseed rape crops in China.Crossref | GoogleScholarGoogle Scholar |

Zhu YY, Chen HR, Fan JH, Wang YY, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew TW, Teng PS, Wang Z, Mundt CC (2000) Genetic diversity and disease control of rice. Nature 406, 718–722.
Genetic diversity and disease control of rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1Cgt7o%3D&md5=41b7138add7d2fb613af2c6252240a41CAS |