Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Soil microbe Bacillus subtilis (GB03) induces biomass accumulation and salt tolerance with lower sodium accumulation in wheat

Jin-Lin Zhang A B E , Mina Aziz B , Yan Qiao C , Qing-Qiang Han A , Jing Li A , Yin-Quan Wang D , Xin Shen B , Suo-Min Wang A and Paul W. Paré B E
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China.

B Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.

C College of Agronomy, Gansu Agricultural University, Lanzhou 730070, P. R. China.

D Department of Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, P. R. China.

E Corresponding authors. Emails: jlzhang@lzu.edu.cn; paul.pare@ttu.edu

Crop and Pasture Science 65(5) 423-427 https://doi.org/10.1071/CP13456
Submitted: 19 December 2013  Accepted: 14 April 2014   Published: 16 June 2014

Abstract

Bacillus subtilis strain GB03 has been shown to confer salt tolerance in Arabidopsis thaliana. In this study, the potential for GB03 to promote biomass accumulation and increase salt tolerance was investigated in wheat (Triticum aestivum). Soil-grown wheat seedlings were assayed for dry-weight increase. Endogenous Na+ and K+ contents were determined in plants with or without soil inoculation with GB03 along with 0, 25 or 100 mm NaCl solution added to the soil. We demonstrated that the introduction of GB03 in the soil triggered wheat biomass accumulation. Furthermore, GB03 improved salt tolerance as measured by increased tissue mass, lower Na+ accumulation and improved K+/Na+ ratio when GB03-inoculated plants were grown under elevated salt conditions. This study provides insight for the application of selected bacteria to monocot crops to combat saline toxicity.

Additional keywords: Bacillus subtilis (GB03), biomass accumulation, salt tolerance, sodium accumulation, wheat.


References

Banchio E, Xie X, Zhang H, Paré PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. Journal of Agricultural and Food Chemistry 57, 653–657.
Soil bacteria elevate essential oil accumulation and emissions in sweet basil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislansQ%3D%3D&md5=dce13e05e22da5ffb74f60619bee5176CAS | 19128010PubMed |

Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp . Biology and Fertility of Soils 32, 265–272.
Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp .Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFyqtrc%3D&md5=4b2e92b9f704f3caa6e2f01f12845b44CAS |

Bonython L, Ballard RA, Charman N, Nichols PGH, Craig AD (2011) New strains of rhizobia that nodulate regenerating messina (Melilotus siculus) plants in saline soils. Crop & Pasture Science 62, 427–436.
New strains of rhizobia that nodulate regenerating messina (Melilotus siculus) plants in saline soils.Crossref | GoogleScholarGoogle Scholar |

Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genetic Engineering News 27, 141–177.
Salt stress signaling and mechanisms of plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSis7bP&md5=13b78813b33772437929cdf95375fd52CAS |

Fischer RA (2011) Wheat physiology: a review of recent developments. Crop & Pasture Science 62, 95–114.
Wheat physiology: a review of recent developments.Crossref | GoogleScholarGoogle Scholar |

Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology 28, 89–121.
The mechanism of salt tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXksFSisb8%3D&md5=f0165296eb9ff6c4989dde3114069773CAS |

Gassmann W, Rubio F, Schroeder JI (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. The Plant Journal 10, 869–882.
Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlKq&md5=1b56dedca6b9eb34c674caaa1cfef87eCAS |

Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology & Biochemistry 37, 395–412.
Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFGgsrnP&md5=59c009ab56f3b67679361631c8bc3673CAS |

Harvey PR, Warren RA, Wakelin S (2009) Potential to improve root access to phosphorus: the role of non-symbiotic microbial inoculants in the rhizosphere. Crop & Pasture Science 60, 144–151.
Potential to improve root access to phosphorus: the role of non-symbiotic microbial inoculants in the rhizosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlyrs7w%3D&md5=65f867424932af66c7aca8fa0c03f499CAS |

Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Journal of Experimental Botany 59, 927–937.
Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1KhtLk%3D&md5=2d247105e41fceefd844a62b7fa675d4CAS | 18325922PubMed |

Ibragimova MV, Rumyantseva ML, Onishchuk OP, Belova VS, Kurchak ON, Andronov EE, Dzyubenko NI, Simarov BV (2006) Symbiosis between the root-nodule bacterium Sinorhizobium meliloti and alfalfa (Medicago sativa) under salinization conditions. Microbiology and Immunology 75, 77–81.

James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany 62, 2939–2947.
Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyks7w%3D&md5=52808fcfbae9e54e6acb050ee9f5914bCAS | 21357768PubMed |

Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. The Plant Journal 32, 139–149.
A role for HKT1 in sodium uptake by wheat roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFGqsLk%3D&md5=fa98f16b833d13451312a756f105be2dCAS | 12383080PubMed |

Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry 42, 565–572.
Plant growth-promoting bacteria confer resistance in tomato plants to salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFyrsrw%3D&md5=267e3075782b9e1baf09b0362d6723c8CAS | 15246071PubMed |

Mhadhbi H, Jebara M, Limam F, Aouani ME (2004) Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea–rhizobia symbioses: modulation by salt stress. Plant Physiology and Biochemistry 42, 717–722.
Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea–rhizobia symbioses: modulation by salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlWmsbw%3D&md5=a5f4992493f6e5bf713bf3114341af70CAS | 15474377PubMed |

Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57, 1025–1043.
Approaches to increasing the salt tolerance of wheat and other cereals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1GlsrY%3D&md5=76af039fc8aa666b0d0fad44a8bbf079CAS | 16510517PubMed |

Ozawa T, Wu J, Fujii S (2007) Effect of inoculation with a strain of Pseudomonas pseudoalcaligenes isolated from the endorhizosphere of Salicornia europea on salt tolerance of the glasswort. Soil Science and Plant Nutrition 53, 12–16.
Effect of inoculation with a strain of Pseudomonas pseudoalcaligenes isolated from the endorhizosphere of Salicornia europea on salt tolerance of the glasswort.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlyitb4%3D&md5=716970ee191752a15d8f09debc0cf595CAS |

Paré PW, Zhang H, Aziz M, Xie X, Kim MS, Shen X, Zhang JL (2011) Beneficial rhizobacteria induce plant growth: mapping signaling networks in Arabidopsis. In ‘Biocommunication in soil microorganisms’. Soil Biology & Biochemistry 23, 403–412.

Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology 37, 255–263.
Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil.Crossref | GoogleScholarGoogle Scholar |

Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Functional Plant Biology 37, 613–620.
Soil processes affecting crop production in salt-affected soils.Crossref | GoogleScholarGoogle Scholar |

Rudrappa T, Biedrzychi ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paré PW, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicative & Integrative Biology 3, 130–138.
The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |

Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370, 655–658.
Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1Cguro%3D&md5=39f3b9eccf5462d7155d7adf2898fabcCAS | 8065452PubMed |

Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91, 503–527.
Na+ tolerance and Na+ transport in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyisbk%3D&md5=e80635d059215607449f374a61ca39a4CAS | 12646496PubMed |

Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biology & Biochemistry 31, 1847–1852.
Cytokinin production by Paenibacillus polymyxa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslGjtLg%3D&md5=17d327085f6b7a51a9473efbcc463473CAS |

van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology 119, 243–254.
Plant responses to plant growth-promoting rhizobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOjtrrP&md5=3d9bf8d4778d281395db7b75177761e5CAS |

Wang SM, Zhang JL, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiology 145, 559–571.
Low-affinity Na+ uptake in the halophyte Suaeda maritima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1SjsLvP&md5=f0d6d8fd8f5a44844268ba2d2d736e5bCAS | 17766398PubMed |

Xie X, Zhang H, Paré PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis. Plant Signaling & Behavior 4, 948–953.
Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1ajurw%3D&md5=2e3b67b9ddb37afd26b1c95d49b8b997CAS |

Zhang JL, Shi HZ (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research 115, 1–22.
Physiological and molecular mechanisms of plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFSnsb8%3D&md5=33a0c4c8d8517b27b21110166bfdb477CAS | 23539361PubMed |

Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag M, Ryu CM, Allen R, Melo I, Paré P (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226, 839–851.
Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1Cnt70%3D&md5=56fc96b485c44879473b3ee896e0b00dCAS | 17497164PubMed |

Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions 21, 737–744.
Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1.Crossref | GoogleScholarGoogle Scholar | 18624638PubMed |

Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008b) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. The Plant Journal 56, 264–273.
Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlChu7rI&md5=fca0986332a64b03febd6cc5b6775755CAS | 18573192PubMed |

Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010a) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Molecular Plant-Microbe Interactions 23, 1097–1104.
Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFegtbc%3D&md5=c97bd870ac629a800007268b7225e623CAS | 20615119PubMed |

Zhang JL, Flowers TJ, Wang SM (2010b) Mechanisms of sodium uptake by roots of higher plants. Plant and Soil 326, 45–60.
Mechanisms of sodium uptake by roots of higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrt7vO&md5=c9c1dab28aa7e1a8b16e8984df1157c7CAS |