Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Targeted exploitation of gene pools of alien Triticeae species for sustainable and multi-faceted improvement of the durum wheat crop

Carla Ceoloni A C , Ljiljana Kuzmanović A , Paola Forte A , Andrea Gennaro A B and Alessandra Bitti A
+ Author Affiliations
- Author Affiliations

A Department of Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, 01100 Viterbo, Italy.

B Present address: GMO Unit, European Food Safety Authority (EFSA), 43126 Parma, Italy.

C Corresponding author. Email: ceoloni@unitus.it

Crop and Pasture Science 65(1) 96-111 https://doi.org/10.1071/CP13335
Submitted: 28 September 2013  Accepted: 7 January 2014   Published: 30 January 2014

Abstract

Enlarging the genetic basis of essential crop species such as the polyploid wheats is a priority in breeding outlooks for the new millennium. To this end, one feasible approach to exploit the wide and largely untapped variation present in the gene pools of alien Triticeae species is chromosome engineering, which enables the transfer of alien chromosomal segments carrying targeted genes to wheat chromosomes. Recent progress in molecular marker technology, molecular cytogenetic techniques, and in genome knowledge has greatly enhanced the ability of chromosome engineering to contribute breeder-friendly germplasm, even in the case of durum wheat, considered more sensitive to genome manipulations than bread wheat. Using finely tuned chromosome engineering, stable incorporation into durum has been achieved for various alien segments containing genes for disease resistance, quality attributes, and even yield-related traits, both separately and in combination. The state of the art and the breeding potential of such transfers are reviewed and updated.

Additional keywords: cytogenetic maps, Fusarium, rusts, Thinopyrum, Triticum, wheat–alien recombinant chromosomes.


References

Abdel-Aal E-SM, Young JC, Wood PJ, Rabalski I, Hucl P, Falk D, Frégeau-Reid J (2002) Einkorn: A potential candidate for developing high lutein wheat. Cereal Chemistry 79, 455–457.
Einkorn: A potential candidate for developing high lutein wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFCmsrg%3D&md5=55d022076e0c2d7dd7db0ea3eab9104fCAS |

Adom KK, Sorrells ME, Hai LR (2003) Phytochemical profiles and antioxidant activity of wheat varieties. Journal of Agricultural and Food Chemistry 51, 7825–7834.
Phytochemical profiles and antioxidant activity of wheat varieties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovV2is7k%3D&md5=0682901177e9a7ddb18bc3425f44f695CAS | 14664553PubMed |

Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiology 154, 526–530.
How do we improve crop production in a warming world?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCkt73J&md5=ae2197926f7498816242f07d106b4b42CAS | 20921178PubMed |

Alvarez JB, Martin LM, Martin A (1998) Chromosomal localization of genes for carotenoid pigments using addition lines of Hordeum chilense in wheat. Plant Breeding 117, 287–289.
Chromosomal localization of genes for carotenoid pigments using addition lines of Hordeum chilense in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFKmu7s%3D&md5=b530cbf0fd2f7976e1654aa32cddcb79CAS |

Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Global Change Biology 17, 997–1012.
The impact of temperature variability on wheat yields.Crossref | GoogleScholarGoogle Scholar |

Atienza SG, Avila CM, Martin A (2007a) The development of a PCR-based marker for PSY1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds. Australian Journal of Agricultural Research 58, 767–773.
The development of a PCR-based marker for PSY1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSgt7vM&md5=1bb1c1fc9bbb8799879e9cd031ad2893CAS |

Atienza SG, Ballesteros J, Martín A, Hornero-Méndez D (2007b) Genetic variability of carotenoid concentration and degree of esterification among tritordeum (×Tritordeum Ascherson et Graebner) and durum wheat accessions. Journal of Agricultural and Food Chemistry 55, 4244–4251.
Genetic variability of carotenoid concentration and degree of esterification among tritordeum (×Tritordeum Ascherson et Graebner) and durum wheat accessions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1elsLg%3D&md5=4e018393babf02562e7d921558f3a3deCAS | 17439153PubMed |

Beddington J, Asaduzzaman M, Clark M, Fernández A, Guillou M, Jahn M, Erda L, Mamo T, Van Bo N, Nobre CA, Scholes R, Sharma R, Wakhungu J (2012) Achieving food security in the face of climate change: Final report from the Commission on Sustainable Agriculture and Climate Change. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark. Available at: www.ccafs.cgiar.org/commission

Bhave M, Morris CF (2008a) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Molecular Biology 66, 205–219.
Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKnsr%2FK&md5=d92bd87d63c95f992398f65641a3c0baCAS | 18049798PubMed |

Bhave M, Morris CF (2008b) Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Molecular Biology 66, 221–231.
Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKnsr%2FE&md5=8b6007df338a89656e482d5ad97c1ae7CAS | 18049797PubMed |

Borlaug NE (2007) Sixty-two years of fighting hunger: personal recollections. Euphytica 157, 287–297.
Sixty-two years of fighting hunger: personal recollections.Crossref | GoogleScholarGoogle Scholar |

Braun H-J, Payne TS, Morgounov AI, van Ginkel M, Rajaram S (1998) The challenge: one billion tons of wheat by 2020. In ‘Proceedings of the 9th International Wheat Genetic Symposium’. 2–7 August 1998. Saskatoon, Canada. Vol. 1. (Ed. AE Slinkard) pp. 33–40. (University Extension Press, University of Saskatchewan: Saskatoon, Canada)

Brisson N, Gate P, Gouache D, Charmet G, Oury FX, Huard F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research 119, 201–212.
Why are wheat yields stagnating in Europe? A comprehensive data analysis for France.Crossref | GoogleScholarGoogle Scholar |

Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128, 1–26.
QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1Knsr0%3D&md5=9556b911d1966ffc263ae5da95a25eceCAS |

Cai X, Chen PD, Xu SS, Oliver RE, Chen X (2005) Utilization of alien genes to enhance Fusarium head blight resistance in wheat – A review. Euphytica 142, 309–318.
Utilization of alien genes to enhance Fusarium head blight resistance in wheat – A review.Crossref | GoogleScholarGoogle Scholar |

Cai X, Xu SS, Oliver RE, Zhang Q, Stack RW, Zhong S, Friesen TL, Halley S, Elias EM (2008) Alien introgression for FHB resistance in wheat—challenges and strategies. In ‘Proceedings of the 11th International Wheat Genetics Symposium’. 24–29 August 2008. Brisbane, Qld. Vol. 3. (Eds R Appels, R Eastwood, E Lagudah, P Langridge, M Mackay, L McIntyre, P Sharp) pp. 716–718. (Sydney University Press: Sydney)

Ceoloni C, Jauhar PP (2006) Chromosome engineering of the durum wheat genome: strategies and applications of potential breeding value. In ‘Genetic resources, chromosome engineering, and crop improvement: cereals’. (Eds RJ Singh, PP Jauhar) pp. 27–59. (CRC Press, Taylor & Francis Group: Boca Raton, FL)

Ceoloni C, Biagetti M, Ciaffi M, Forte P, Pasquini M (1996) Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum wheat. Euphytica 89, 87–97.
Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslCksL4%3D&md5=c2f092242d46e3405a8886043c8b0e61CAS |

Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A (2005a) Recent developments in durum wheat chromosome engineering. Cytogenetic and Genome Research 109, 328–334.
Recent developments in durum wheat chromosome engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFersrc%3D&md5=0b6bd2c7b3185906eaad6c9fadeb9025CAS | 15753593PubMed |

Ceoloni C, Pasquini M, Simeone R (2005b) The cytogenetic contribution to the analysis and manipulation of the durum wheat genome. In ‘Durum wheat breeding: current approaches and future strategies’. (Eds C Royo, MN Nachit, N Di Fonzo, JL Araus, WH Pfeiffer, GA Slafer) pp. 165–196. (The Haworth Press: New York)

Ceoloni C, Kuzmanović L, Gennaro A, Forte P, Giorgi D, Grossi MR, Bitti A (2014) Genomes, chromosomes and genes of perennial Triticeae of the genus Thinopyrum: the value of their transfer into wheat for gains in cytogenomic knowledge and ‘precision’ breeding. In ‘Advances in genomics of plant genetic resources’. (Eds R Tuberosa, A Graner, E Frison) pp. 333–358. (Springer: Dordrecht, The Netherlands)

Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathology 60, 2–14.
Climate change, plant diseases and food security: an overview.Crossref | GoogleScholarGoogle Scholar |

Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the Hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). The Plant Cell 17, 1033–1045.
Molecular basis of evolutionary events that shaped the Hardness locus in diploid and polyploid wheat species (Triticum and Aegilops).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslShu70%3D&md5=6f3f6e3eee9aa27538cfbf7b2f6be632CAS | 15749759PubMed |

Chapman SC, Chakraborty S, Dreccer MF, Howden SM (2012) Plant adaptation to climate change - opportunities and priorities in breeding. Crop & Pasture Science 63, 251–268.
Plant adaptation to climate change - opportunities and priorities in breeding.Crossref | GoogleScholarGoogle Scholar |

Chen PD, Liu WX, Yuan JH, Wang X, Zhou B, Wang SL, Zhang SZ, Feng YG, Yang BJ, Liu GX, Liu DJ, Qi LL, Zhang P, Friebe B, Gill BS (2005) Development and characterization of wheat–Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theoretical and Applied Genetics 111, 941–948.
Development and characterization of wheat–Leymus racemosus translocation lines with resistance to Fusarium Head Blight.Crossref | GoogleScholarGoogle Scholar |

Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. The Plant Genome 5, 42–50.
Genome engineering of crops with designer nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Ggu7%2FN&md5=4e7784959c19973af85cb5e966685f0cCAS |

Curtis BC, Rajaram S, Gómez Macpherson H (Eds) (2002) ‘Bread wheat—Improvement and production.’ FAO Plant Production and Protection Series No. 30. FAO, Rome. Available at: www.fao.org/DOCREP/006/Y4011E/Y4011E00.HTM

D’Egidio MG, Nardi S, Vallega V (1993) Grain, flour and dough characteristics of selected strains of diploid wheat, Triticum monococcum L. Cereal Chemistry 70, 298–303.

Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13, 414–430.
The Top 10 fungal pathogens in molecular plant pathology.Crossref | GoogleScholarGoogle Scholar | 22471698PubMed |

Dixon J, Braun H-J, Crouch JH (2009) Transitioning wheat research to serve the future needs of the developing world. In ‘Wheat facts and futures’. (Eds J Dixon, HJ Braun, P Kosina, J Crouch) pp. 1–25. (CIMMYT: Mexico, DF)

Doležel J, Vrána J, Šafář J, Bartoš J, Kubaláková M, Šimková H (2012) Chromosomes in the flow to simplify genome analysis. Functional & Integrative Genomics 12, 397–416.
Chromosomes in the flow to simplify genome analysis.Crossref | GoogleScholarGoogle Scholar |

Dvorak J (1975) Meiotic pairing between single chromosomes of diploid Agropyron elongatum and decaploid A. elongatum in Triticum aestivum. Canadian Journal of Genetics and Cytology 17, 329–336.

Elouafi I, Nachit MM, Martin LM (2001) Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135, 255–261.
Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFaisb4%3D&md5=20d1c69d7bef98106acb20ee7331ad99CAS | 12152344PubMed |

Farré G, Sanahujaa G, Naqvia S, Baia C, Capella T, Zhua C, Christou P (2010) Travel advice on the road to carotenoids in plants. Plant Science 179, 28–48.
Travel advice on the road to carotenoids in plants.Crossref | GoogleScholarGoogle Scholar |

Fedak G, Cao W, Xue A, Savard ME, Clarke J, Gilbert J, Somers DJ (2008) Enhanced Fusarium head blight resistance in bread wheat and durum by alien introgressions. In ‘Proceedings of the 11th International Wheat Genetics Symposium’. 24–29 August 2008. Brisbane, Qld. (Eds R Appels, R Eastwood, E Lagudah, P Langridge, M Mackay, L McIntyre, P Sharp) Vol. 1. pp. 209–211. (Sydney University Press: Sydney)

Forte P, Kuzmanović L, Gennaro A, Bitti A, Ceoloni C (2011) Using wild species of Thinopyrum genus in breeding wheat resistant to Fusarium head blight. In ‘Proceedings of the Joint Meeting AGI-SIBV-SIGA’. 19–22 September 2011. Assisi, Italy. Abstract 6A.21. (Società italiana di Genetica Agraria: Portici, Italy) Available at: www.geneticagraria.it/attachment/Abstract_2011/6A_21.pdf

Forte P, Kuzmanović L, Virili ME, Gennaro A, Bitti A, Ceoloni C (2013) Pyramiding resistance genes to Fusarium Head Blight and rusts from Thinopyrum ponticum into durum wheat. In ‘International Symposium on Genetics and Breeding of Durum Wheat’. 27–30 May 2013. Rome. Abstract, p. 152. (ENEA: Rome)

Fowler C (2008) Conserving crop diversity: navigating politics and climate change to create a global system. In ‘Proceedings of the 11th International Wheat Genetics Symposium’. 24–29 August 2008. Brisbane, Qld. Vol. 1. (Eds R Appels, R Eastwood, E Lagudah, P Langridge, M Mackay, L McIntyre, P Sharp) pp. 19–21. (Sydney University Press: Sydney)

Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59–87.
Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status.Crossref | GoogleScholarGoogle Scholar |

Fu BX, Assefaw EG, Sarkar AK, Carson GR (2006) Evaluation of durum wheat fine flour for alkaline noodle processing. Cereal Foods World 51, 178–183.

Gallagher CE, Matthews PD, Li F, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiology 135, 1776–1783.
Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOqtrs%3D&md5=49501708a5727524a59dbdae1ce2524cCAS | 15247400PubMed |

Gazza L, Zanella L, Pogna N (2008) Development of durum wheat (Triticum turgidum ssp. durum) lines with soft kernel texture by chromosome engineering. In ‘Proceedings of the 11th International Wheat Genetics Symposium’. 24–29 August 2008. Brisbane, Qld. Vol. 2. (Eds R Appels, R Eastwood, E Lagudah, P Langridge, M Mackay, L McIntyre, P Sharp) pp. 339–341 (Sydney University Press: Sydney)

Gazza L, Sgrulletta D, Cammerata A, Gazzelloni G, Galassi E, Pogna N (2013) Breeding and quality of soft-textured durum wheat. In ‘International Symposium on Genetics and Breeding of Durum Wheat’. 27–30 May 2013. Rome. Abstract, p. 68 (ENEA: Rome)

Gennaro A, Borrelli GM, D’Egidio MG, De Vita P, Ravaglia S, Ceoloni C (2003) A chromosomally engineered durum wheat–Thinopyrum ponticum recombinant line with novel and promising attributes for varietal development. In ‘Proceedings of the 10th International Wheat Genetics Symposium’. 1–6 September 2003. Paestum, Italy. Vol. 2. (Eds NE Pogna, M Romanò, EA Pogna, G Galterio) pp. 881–883. (SIMI: Rome)

Gennaro A, Forte P, Carozza R, Savo Sardaro ML, Ferri D, Bitti A, Borrelli GM, D’Egidio MG, Ceoloni C (2007) Pyramiding different alien chromosome segments in durum wheat: feasibility and breeding potential. Israel Journal of Plant Sciences 55, 267–276.
Pyramiding different alien chromosome segments in durum wheat: feasibility and breeding potential.Crossref | GoogleScholarGoogle Scholar |

Gennaro A, Koebner RMD, Janni M, Ceoloni C (2008) Identification of candidate sequences for the Lr19 and Yp genes transferred from Thinopyrum ponticum to durum wheat by chromosome engineering. In ‘Proceedings of the Plant and Animal Genome XVI Conference’. San Diego, CA, USA. Abstract p.312. (Plant and Animal Genome Conference)

Gennaro A, Koebner RMD, Ceoloni C (2009) A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Functional & Integrative Genomics 9, 325–334.
A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Churc%3D&md5=9d47d52910bb9a39073ba47e5e9bc95bCAS |

Gennaro A, Forte P, Panichi D, Lafiandra D, Pagnotta MA, D’Egidio MG, Ceoloni C (2012) Stacking small segments of the 1D chromosome of bread wheat containing major gluten quality genes into durum wheat: transfer strategy and breeding prospects. Molecular Breeding 30, 149–167.
Stacking small segments of the 1D chromosome of bread wheat containing major gluten quality genes into durum wheat: transfer strategy and breeding prospects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFOlu7g%3D&md5=18de25e96c4058b98b49ad897e67bc43CAS |

Giorgi B (1983) Origin, behaviour and utilization of a Ph1 mutant of durum wheat, Triticum turgidum (L.) var. durum. In ‘Proceedings of the 6th International Wheat Genetics Symposium’. 28 November–3 December 1983. Kyoto, Japan. (Ed. S Sakamoto) pp. 1033–1040. (Plant Germplasm Institute, Kyoto University: Kyoto, Japan)

Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S (2013) FISHIS: Fluorescence In Situ Hybridization in Suspension and chromosome flow sorting made easy. PLoS ONE 8, e57994
FISHIS: Fluorescence In Situ Hybridization in Suspension and chromosome flow sorting made easy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktV2jur8%3D&md5=d1d07fd22063daf8405b6f7fc8803c35CAS | 23469124PubMed |

Habash DZ, Kehel Z, Nachit M (2009) Genomic approaches for designing durum wheat ready for climate change with a focus on drought. Journal of Experimental Botany 60, 2805–2815.
Genomic approaches for designing durum wheat ready for climate change with a focus on drought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFWjur4%3D&md5=d4ab70ccac7174dfb37bc9b515725dc2CAS | 19584119PubMed |

Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 156, 1–13.
The use of wild relatives in crop improvement: A survey of developments over the last 20 years.Crossref | GoogleScholarGoogle Scholar |

Hao C, Wang Y, Hou J, Feuillet C, Balfourier F, Zhang X (2012) Association mapping and haplotype analysis of a 3.1-Mb genomic region involved in Fusarium head blight resistance on wheat chromosome 3BS. PLoS ONE 7, e46444
Association mapping and haplotype analysis of a 3.1-Mb genomic region involved in Fusarium head blight resistance on wheat chromosome 3BS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFaks7zK&md5=f381340013e265c43c89127aa3502708CAS | 23071572PubMed |

Hawkesford MJ, Araus J-L, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry MAJ (2013) Prospects of doubling global wheat yields. Food and Energy Security 2, 34–48.
Prospects of doubling global wheat yields.Crossref | GoogleScholarGoogle Scholar |

He XY, Zhang YL, He ZH, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theoretical and Applied Genetics 116, 213–221.
Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurrE&md5=1b6e04b5892e7efbafe34f14f12e6815CAS | 17943267PubMed |

Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Science 43, 1839–1847.
PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVSktrY%3D&md5=f5fb8b21c7cd440eef623406604acc71CAS |

Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Bohm V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. Journal of Agricultural and Food Chemistry 50, 6663–6668.
Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFWmurs%3D&md5=2e66e8a41de99bbae666d64982b322f9CAS | 12405758PubMed |

Hillel D, Rosenzweig C (2012) Agriculture and environment in a crowding and warming world. In ‘Handbook of climate change and agroecosystems: Global and regional aspects and implications’. ICP Series on Climate Change Impacts, Adaptation, and Mitigation: Vol. 2. (Eds D Hillel, C Rosenzweig) pp. 3–10. (American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America/Imperial College Press: Madison, WI/London)

Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnology Journal
Intragenesis and cisgenesis as alternatives to transgenic crop development.Crossref | GoogleScholarGoogle Scholar | 23421562PubMed |

Huntingford C, Jones PD, Livina VN, Lenton TM, Cox PM (2013) No increase in global temperature variability despite changing regional patterns. Nature
No increase in global temperature variability despite changing regional patterns.Crossref | GoogleScholarGoogle Scholar | 24108046PubMed |

Imai I, Kimball JA, Conway B, Yeater KM, McCouch SR, McClung A (2013) Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice. Molecular Breeding 32, 101–120.
Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFertb0%3D&md5=bfd266c282319c8b0018362d1650cad8CAS |

Isidro J, Alvaro F, Royo C, Villegas D, Miralles DJ, García del Moral LF (2011) Changes in duration of developmental phases of durum wheat caused by breeding in Spain and Italy during the 20th century and its impact on yield. Annals of Botany 107, 1355–1366.
Changes in duration of developmental phases of durum wheat caused by breeding in Spain and Italy during the 20th century and its impact on yield.Crossref | GoogleScholarGoogle Scholar | 21444337PubMed |

ISTAT (2013) Agricoltura e zootecnia. The Italian National Institute of Statistics, Rome. Available at: http://agri.istat.it/

Jahier J, Abelard P, Tanguy M, Dedryver F, Rivoal R, Khatkar S, Bariana HS, Koebner R (2001) The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar ‘VPM1’ carries the cereal cyst nematode resistance gene Cre5. Plant Breeding 120, 125–128.
The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar ‘VPM1’ carries the cereal cyst nematode resistance gene Cre5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslGlsbk%3D&md5=5a7c781f5e3470372926ff35a9f57c38CAS |

Jain SK, Prashar M, Bhardwaj SC, Singh SB, Sharma YP (2009) Emergence of virulence to Sr25 of Puccinia graminis f. sp. tritici on wheat in India. Plant Disease 93, 840
Emergence of virulence to Sr25 of Puccinia graminis f. sp. tritici on wheat in India.Crossref | GoogleScholarGoogle Scholar |

Jauhar PP, Peterson TS (2011) Cytological and molecular characterization of homoeologous group-1 chromosomes in hybrid derivatives of a durum disomic alien addition line. The Plant Genome 4, 102–109.
Cytological and molecular characterization of homoeologous group-1 chromosomes in hybrid derivatives of a durum disomic alien addition line.Crossref | GoogleScholarGoogle Scholar |

Jauhar PP, Peterson TS, Xu SS (2009) Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome 52, 467–483.
Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFSms7k%3D&md5=b83ae350248fcf4b8d00249167e68343CAS | 19448727PubMed |

Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91–95.
Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFOqt70%3D&md5=94e190f3fa8177cab006d86780002c3aCAS | 23535592PubMed |

Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Fetch T, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Disease 91, 1096–1099.
Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici.Crossref | GoogleScholarGoogle Scholar |

Jin Y, Szabo LJ, Pretorious ZA, Singh RP, Fetch T (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Disease 92, 923–926.
Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici.Crossref | GoogleScholarGoogle Scholar |

Joppa LR, Williams ND (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30, 222–228.
Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat.Crossref | GoogleScholarGoogle Scholar |

Kassem M, Hazzam H, Nachit M (2013) Identifying resistance gene(s) to Puccinia striiformis f. sp. tritici of durum wheat (Triticum durum Desf.). In ‘International Symposium on Genetics and Breeding of Durum Wheat’. 27–30 May 2013. Rome. Abstract, p. 60. (ENEA: Rome)

Khush GS (2001) Green revolutions: the way forward. Nature Reviews. Genetics 2, 815–822.
Green revolutions: the way forward.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1Wgu7w%3D&md5=7c4fa8c9110da23c7bdeceacbdf22692CAS | 11584298PubMed |

Kibirige-Sebunya I, Knott DR (1983) Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Canadian Journal of Genetics and Cytology 25, 215–221.

Klindworth DL, Xu SS (2008) Development of a set of stem rust susceptible D-genome disomic substitutions based on Rusty durum. In ‘Proceedings of the 11th International Wheat Genetics Symposium’. 24–29 August 2008, Brisbane, Qld. Vol. 2. (Eds R Appels, R Eastwood, E Lagudah, P Langridge, M Mackay, L McIntyre, P Sharp) pp. 367–369. (Sydney University Press: Sydney)

Klindworth DL, Niu Z, Chao S, Friesen TL, Jin Y, Faris JD, Cai X, Xu SS (2012) Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat. G3: Genes, Genomes. Genetics 2, 665–673.

Klindworth DL, Hareland GA, Elias E, Xu SS (2013) Attempts to reduce effects of linkage drag on agronomic characteristics of durum wheat 1AS/1DL translocation lines. Crop Science 53, 422–429.
Attempts to reduce effects of linkage drag on agronomic characteristics of durum wheat 1AS/1DL translocation lines.Crossref | GoogleScholarGoogle Scholar |

Knott DR (1989) Genetic analysis of resistance. In ‘The wheat rusts—Breeding for resistance’. pp. 58–83. (Springer: Berlin)

Knott DR, Dvorak J, Nanda JS (1977) The transfer to wheat and homoeology of an Agropyron elongatum chromosome carrying resistance to stem rust. Canadian Journal of Genetics and Cytology 19, 75–79.

Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363.
A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFemtbg%3D&md5=6e9662f1024266d80a4eb251b55c3b46CAS | 19229000PubMed |

Kuzmanović L, Gennaro A, Benedettelli S, Dodd IC, Quarrie SA, Ceoloni C (2013) Structural-functional dissection and characterization of yield-contributing traits originating from a group 7 chromosome of the wheatgrass species Thinopyrum ponticum after transfer into durum wheat. Journal of Experimental Botany
Structural-functional dissection and characterization of yield-contributing traits originating from a group 7 chromosome of the wheatgrass species Thinopyrum ponticum after transfer into durum wheat.Crossref | GoogleScholarGoogle Scholar | 24319256PubMed | In press.

Li H, Wang X (2009) Thinopyrum ponticum and Thinopyrum intermedium: the promising source of resistance to fungal and viral diseases of wheat. Journal of Genetics and Genomics 36, 557–565.
Thinopyrum ponticum and Thinopyrum intermedium: the promising source of resistance to fungal and viral diseases of wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1aisbfN&md5=3b7978e6f080fca655ec4f43a837d62eCAS | 19782957PubMed |

Ling HQ, Zhao S, Liu D, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496, 87–90.
Draft genome of the wheat A-genome progenitor Triticum urartu.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFyjsL8%3D&md5=1fae203dc7266c7de4056a9a6354462eCAS | 23535596PubMed |

Liu CY, Rathjen AJ, Shepherd KW, Gras PW, Giles LC (1995) Grain quality and yield characteristics of D-genome disomic substitution lines in ‘Langdon’ (Triticum turgidum var. durum). Plant Breeding 114, 34–39.
Grain quality and yield characteristics of D-genome disomic substitution lines in ‘Langdon’ (Triticum turgidum var. durum).Crossref | GoogleScholarGoogle Scholar |

Liu CY, Shepherd KW, Rathjen AJ (1996) Improvement of durum wheat pastamaking and breadmaking qualities. Cereal Chemistry 73, 155–166.

Luck J, Spackman M, Freeman A, Trębicki P, Griffithsce W, Finlayac K, Chakraborty S (2011) Climate change and diseases of food crops. Plant Pathology 60, 113–121.
Climate change and diseases of food crops.Crossref | GoogleScholarGoogle Scholar |

Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Science 40, 216–225.
Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFeqtrk%3D&md5=f791338e43e4b6aee61685f059393996CAS |

Lukaszewski AJ (2006) Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Science 46, 2183–2194.
Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2ru7zE&md5=baa26190f893d56374ed8c9bc7bb0724CAS |

Mago R, Spielmeyer W, Lawrence G, Lagudah E, Ellis J, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theoretical and Applied Genetics 104, 1317–1324.
Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlWru78%3D&md5=4c709da4f8fd7a692eab1169911ac20bCAS | 12582587PubMed |

Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Australian Journal of Agricultural Research 52, 1297–1309.
Mapping components of flour and noodle colour in Australian wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlOmtw%3D%3D&md5=5035ee4c2ba9e3f2164364ec4b1a3226CAS |

Martín A, Cabrera A, Hernández P, Ramírez MC, Rubiales D, Ballesteros J (2000) Prospect for the use of Hordeum chilense in durum wheat breeding. In ‘Durum wheat improvement in the Mediterranean region: New challenges’. 12–12 April 2000. Zaragoza, Spain. (Eds C Royo, M Nachit, N Di Fonzo, JL Araus) Options Méditerranéennes: Série A. Séminaires Méditerranéens No. 40, pp. 111–115. (CIHEAM: Paris)

Mba C, Guimaraes EP, Ghosh K (2012) Re-orienting crop improvement for the changing climatic condition of the 21st century. Agriculture and Food Security 1, paper 7
Re-orienting crop improvement for the changing climatic condition of the 21st century.Crossref | GoogleScholarGoogle Scholar |

McFadden ES (1928) Possibilities and difficulties in the field of radical wheat crossing. In ‘Proceedings of the 1st Annual Hard Spring Wheat Conference’. Fargo, ND. pp. 58–61. (USDA-ARS: Fargo, ND)

McFadden ES, Sears ER (1947) The genomic approach in radical wheat breeding. Journal – American Society of Agronomy 39, 1011–1026.
The genomic approach in radical wheat breeding.Crossref | GoogleScholarGoogle Scholar |

McIntosh RA, Dyck PL, Green GJ (1977) Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Australian Journal of Agricultural Research 28, 37–45.
Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha.Crossref | GoogleScholarGoogle Scholar |

McIntosh RA, Wellings CR, Park RF (1995) ‘Wheat rusts, an Atlas of resistance genes.’ (CSIRO: Melbourne)

McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. GrainGenes Database. Available at: http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008/GeneSymbol.pdf

Meng E, Loyns A, Pena RJ (2009) Wheat quality in the developing world: trends and opportunities. In ‘Wheat facts and futures 2009’. (Eds J Dixon, HJ Braun, P Kosina, J Crouch) pp. 26–41. (CIMMYT: Mexico, DF)

Mesterházy A, Bartos P, Goyeau H, Niks R, Csosz M, Andersen O, Casulli F, Ittu M, Jones E, Manisterski J, Manninger K, Pasquini M, Rubiales D, Schachermayr G, Strzembicka A, Szunics L, Todorova M, Unger O, Vanco B, Vida G, Walther U (2000) European virulence survey for leaf rust in wheat. Agronomie 20, 793–804.
European virulence survey for leaf rust in wheat.Crossref | GoogleScholarGoogle Scholar |

Miller SS, Watson EM, Lazebnik J, Gulden S, Balcerzak M, Fedak G, Ouellet T (2011) Characterization of an alien source of resistance to Fusarium head blight transferred to Chinese Spring wheat. Botany 89, 301–311.
Characterization of an alien source of resistance to Fusarium head blight transferred to Chinese Spring wheat.Crossref | GoogleScholarGoogle Scholar |

Milus EA, Kristensen K, Hovmoller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99, 89–94.
Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat.Crossref | GoogleScholarGoogle Scholar | 19055439PubMed |

Misra SC, Tamhankar S, Oak MD, Honrao BK, Cholin S, More MN, Raut AL, Ladhe P, Ayachit G (2013) Improving quality and stem rust resistance in popular Indian durum wheat varieties using marker assisted backcross breeding. In ‘International Symposium on Genetics and Breeding of Durum Wheat’. 27–30 May 2013. Rome. Abstract, p. 163. (ENEA: Rome)

Monneveux P, Reynolds MP, Gonzalez Aguilar J, Singh RP (2003) Effects of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morphophysiological traits under different environments. Plant Breeding 122, 379–384.
Effects of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morphophysiological traits under different environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslGgtbo%3D&md5=7ecb0eae44ebd139d8cb4ce45dfc4b44CAS |

Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Molecular Biology 48, 633–647.
Puroindolines: the molecular genetic basis of wheat grain hardness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFWrtrc%3D&md5=d1df5bcf54b585fc215b1049ce6963e8CAS | 11999840PubMed |

Morris CF, Rose SP (1996) Wheat. In ‘Cereal grain quality’. Ch. 1. (Eds RJ Henry, PS Kettlewell) pp. 3–54. (Chapman & Hall: London)

Morris CF, Simeone MN, King GE, Lafiandra D (2011) Transfer of soft kernel texture from Triticum aestivum to durum wheat, Triticum turgidum ssp. durum. Crop Science 51, 114–122.
Transfer of soft kernel texture from Triticum aestivum to durum wheat, Triticum turgidum ssp. durum.Crossref | GoogleScholarGoogle Scholar |

Neu C, Stein N, Keller B (2002) Genetic mapping of the Lr20–Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45, 737–744.
Genetic mapping of the Lr20–Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVersrY%3D&md5=25b2b03dc53f6bb92ba8ceac9d29069fCAS | 12175077PubMed |

Nocente F, Gazza L, Pasquini M (2008) Resistance gene pyramiding in common wheat as a strategy to control rust diseases. In ‘Modern variety breeding for present and future needs. Proceedings of the 18th Eucarpia General Congress’. 9–12 September 2008. Valencia, Spain. pp. 445–446. (Editorial Universidad Politecnica de Valencia: Valencia, Spain)

Nocente F, Sereni L, Matere A, Pasquini M (2011) Recent occurrence of Puccinia graminis f. sp. tritici in Italy: pathogen virulence composition and seedling resistance of durum and common wheat. Cereal Research Communications 39, 77–87.
Recent occurrence of Puccinia graminis f. sp. tritici in Italy: pathogen virulence composition and seedling resistance of durum and common wheat.Crossref | GoogleScholarGoogle Scholar |

Oliver RE, Cai X, Xu SS, Chen X, Stack RW (2005) Wheat-alien species derivatives: A novel source of resistance to Fusarium head blight in wheat. Crop Science 45, 1353–1360.
Wheat-alien species derivatives: A novel source of resistance to Fusarium head blight in wheat.Crossref | GoogleScholarGoogle Scholar |

Olivera PD, Jin Y (2013) Genetic resources for stem rust resistance in cultivated and wild tetraploids. In ‘International Symposium on Genetics and Breeding of Durum Wheat’. 27–30 May 2013. Rome. Abstract, p. 56. (ENEA: Rome)

Ordoñez ME, Kolmer JA (2007) Virulence phenotypes of a worldwide collection of Puccinia triticina from durum wheat. Phytopathology 97, 344–351.
Virulence phenotypes of a worldwide collection of Puccinia triticina from durum wheat.Crossref | GoogleScholarGoogle Scholar | 18943655PubMed |

Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 97, 238–245.
Mapping loci associated with flour colour in wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslaisrs%3D&md5=c2f994dd5bc93514eaa9691aea35655cCAS |

Pasquini M, Iori A, Nocente F, Matere A, Sereni L, L’Aurora A, Gazza L, Casini F (2008) Resistance to fungal pathogens for the improvement of wheat quality. Petria 18, 441–444.

Payne PI, Holt LM, Harinder K, McCartney DP, Lawrence GJ (1987) The use of near-isogenic lines with different HMW glutenin subunit composition in studying breadmaking quality and glutenin structure. ‘Proceedings of the 3rd International Gluten Workshop’. 9–12 May 1987. Budapest, Hungary. (Eds RD Lasztity, F Békés) pp. 216–226. (World Scientific Publishers: Singapore)

Podevin N, Davies HV, Hartung F, Nogué F, Casacuberta JM (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends in Biotechnology 31, 375–383.
Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtV2iur4%3D&md5=813446552749d4c3bdbaf3876606739aCAS | 23601269PubMed |

Pogna NE, Redaelli R, Pasquini M, Curioni A, Dal Belin Peruffo A, Castagna R (1993) Inheritance studies of two chromosome translocations in bread and durum wheat. In ‘Proceedings of the 5th International Workshop on Gluten Proteins’. 7–9 June 1993. Detmold, Germany. pp. 308–318. (Association of Cereal Research: Detmold, Germany)

Pozniak C, Knox R, Clarke F, Clarke J (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theoretical and Applied Genetics 114, 525–537.
Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFKrsw%3D%3D&md5=461265f61aaa7f1cd336c1dd33f58e9dCAS | 17131106PubMed |

Prasad SV, Sai, Singh SK, Kumar V, Kantwa SL, Dubey VG, Ambati D, Prakasha TL, Mishra AN (2013) Pyramiding of resistance genes Sr36 and Sr2 in durum wheat background (HI 8498) through marker-assisted selection for resistance to stem rust race 117-group pathotypes. In ‘International Symposium on Genetics and Breeding of Durum Wheat’. 27–30 May 2013. Rome. Abstract, p. 57. (ENEA: Rome)

Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Disease 84, 203
Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda.Crossref | GoogleScholarGoogle Scholar |

Reynolds MP (2010) ‘Climate change and crop production.’ (CAB International: Wallingford, UK)

Reynolds MP, Calderini DF, Condon AG, Rajaram S (2001) Physiological basis of yield gains in wheat associated with the Lr19 translocation from Agropyron elongatum. Euphytica 119, 137–141.
Physiological basis of yield gains in wheat associated with the Lr19 translocation from Agropyron elongatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVemurc%3D&md5=b0c14b010c013543ec2a38bc172e7851CAS |

Reynolds M, Braun H-J, Pietragalla J, Ortiz R (2007) Challenges to international wheat breeding. Euphytica 157, 281–285.
Challenges to international wheat breeding.Crossref | GoogleScholarGoogle Scholar |

Rickards L, Howden SM (2012) Transformational adaptation: agriculture and climate change. Crop & Pasture Science 63, 240–250.
Transformational adaptation: agriculture and climate change.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Suárez C, Gimenez MJ, Atienza SG (2010) Progress and perspectives for carotenoid accumulation in selected Triticeae species. Crop & Pasture Science 61, 743–751.
Progress and perspectives for carotenoid accumulation in selected Triticeae species.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Suárez C, Atienza SG, Pistón F (2011) Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult. PLoS ONE 6, e19885
Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult.Crossref | GoogleScholarGoogle Scholar | 21603624PubMed |

Rogers W, Ritckatson J, Sayers E, Law C (1990) Dosage effects of chromosomes of homoeologous groups 1 and 6 upon bread-making quality in hexaploid wheat. Theoretical and Applied Genetics 80, 281–287.
Dosage effects of chromosomes of homoeologous groups 1 and 6 upon bread-making quality in hexaploid wheat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c7lvVehtg%3D%3D&md5=c5f0bd8abcd3dd757f8ce5ebefdeb8b8CAS | 24220908PubMed |

Sears ER (1972) Chromosome engineering in wheat. In ‘Stadler Genetic Symposia’. Vol. 4. (Eds G Kimber, GP Rédei) pp. 23–38. (University of Missouri: Columbia, MO)

Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Canadian Journal of Genetics and Cytology 19, 585–593.

Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Canadian Journal of Genetics and Cytology 8, 137–143.

Sharma S, Bhat PR, Ehdaie B, Close TJ, Lukaszewski AJ, Waines JG (2009) Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat. Theoretical and Applied Genetics 119, 783–793.
Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaqsbjN&md5=fbbef1b235c6a1e14ff3969d066ce089CAS | 19544051PubMed |

Sharma S, Xu S, Ehdaie B, Hoops A, Close TJ, Lukaszewski AJ, Waines JG (2011) Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theoretical and Applied Genetics 122, 759–769.
Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat.Crossref | GoogleScholarGoogle Scholar | 21153397PubMed |

Shen X, Ohm H (2006) Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augumentation with Fhb1 in wheat. Plant Breeding 125, 425–429.
Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augumentation with Fhb1 in wheat.Crossref | GoogleScholarGoogle Scholar |

Shen X, Ohm H (2007) Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Molecular Breeding 20, 131–140.
Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVOhtrk%3D&md5=c2f8fc02915e6d120c500a51bc2b5991CAS |

Shen X, Kong L, Ohm H (2004) Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theoretical and Applied Genetics 108, 808–813.
Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlals7o%3D&md5=9fde55db5d825119f6e30e306fb24f3aCAS | 14628111PubMed |

Singh RP, Payne TS, Figueroa P, Valenzuela S (1991) Comparison of the effect of leaf rust on the grain yield of resistant, partially resistant, and susceptible spring wheat cultivars. American Journal of Alternative Agriculture 6, 115–121.
Comparison of the effect of leaf rust on the grain yield of resistant, partially resistant, and susceptible spring wheat cultivars.Crossref | GoogleScholarGoogle Scholar |

Singh RP, Huerta-Espino J, Rajaram S, Crossa J (1998) Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop Science 38, 27–33.
Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat.Crossref | GoogleScholarGoogle Scholar |

Singh RP, Huerta-Espino JH, Pfeiffer W, Figueroa-Lopez P (2004) Occurrence and impact of a new leaf rust race on durum wheat in northwestern Mexico from 2001 to 2003. Plant Disease 88, 703–708.
Occurrence and impact of a new leaf rust race on durum wheat in northwestern Mexico from 2001 to 2003.Crossref | GoogleScholarGoogle Scholar |

Singh RP, Huerta-Espino JH, Jin Y, Herrera-Foessel S, Njau P, Wanyera R, Ward RW (2008) Current resistance sources and breeding strategies to mitigate Ug99 threat. ‘Proceedings of the 11th International Wheat Genetics Symposium’. 24–29 August 2008. Brisbane, Qld. Vol. 1. (Eds R Appels, R Eastwood, E Lagudah, P Langridge, M Mackay, L McIntyre, P Sharp) pp. 7–9. (Sydney University Press: Sydney)

Singh A, Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theoretical and Applied Genetics 118, 1539–1548.
Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1OltrY%3D&md5=69fb3e743e6598cc68486882a45a3b25CAS | 19319504PubMed |

Song L, Jiang L, Han H, Gao A, Yang X, Li L, Liu W (2013) Efficient induction of wheat–Agropyron cristatum 6P translocation lines and GISH detection. PLoS ONE 8, e69501
Efficient induction of wheat–Agropyron cristatum 6P translocation lines and GISH detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGjsbjO&md5=5528597a661ece1159f1eee3e1f1fb3aCAS | 23874966PubMed |

Stamp P, Visser R (2012) The twenty-first century, the century of plant breeding. Euphytica 186, 585–591.
The twenty-first century, the century of plant breeding.Crossref | GoogleScholarGoogle Scholar |

Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327, 818–822.
Breeding technologies to increase crop production in a changing world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWisLg%3D&md5=d601d7289a13cd420f32daaae875096aCAS | 20150489PubMed |

Troccoli A, Borrelli GM, De Vita P, Fares C, Di Fonzo N (2000) Durum wheat quality: a multidisciplinary concept. Journal of Cereal Science 32, 99–113.
Durum wheat quality: a multidisciplinary concept.Crossref | GoogleScholarGoogle Scholar |

Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A (2012) Genome modifications in plant cells by custom-made restriction enzymes. Plant Biotechnology Journal 10, 373–389.
Genome modifications in plant cells by custom-made restriction enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1ygsr4%3D&md5=1cd8b5341067ec8cc80790abe79991dfCAS | 22469004PubMed |

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nature Reviews. Genetics 11, 636–646.
Genome editing with engineered zinc finger nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCnurzE&md5=1c07d5401a1747ef70235271d7474c64CAS | 20717154PubMed |

van Poecke RMP, Maccaferri M, Tang J, Truong HT, Janssen A, van Orsouw NJ, Salvi S, Sanguineti MC, Tuberosa R, van der Vossen EAG (2013) Sequence-based SNP genotyping in durum wheat. Plant Biotechnology Journal
Sequence-based SNP genotyping in durum wheat.Crossref | GoogleScholarGoogle Scholar |

Villareal RL, Rajaram S, Mujeeb-Kazi A, Del Toro E (1991) The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breeding 106, 77–81.
The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar |

Villareal RL, Del Toro E, Mujeeb-Kazi A, Rajaram S (1995) The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breeding 114, 497–500.
The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross.Crossref | GoogleScholarGoogle Scholar |

Vitellozzi F, Ciaffi M, Dominici L, Ceoloni C (1997) Isolation of a chromosomally engineered durum wheat line carrying the common wheat Glu-D1d allele. Agronomie 17, 413–419.
Isolation of a chromosomally engineered durum wheat line carrying the common wheat Glu-D1d allele.Crossref | GoogleScholarGoogle Scholar |

Wang RR-C (2011) Agropyron and Psathyrostachys. In ‘Wild crop relatives: Genomic and breeding resources, Cereals’. (Ed. C Kole) pp. 77–108. (Springer-Verlag: Berlin, Heidelberg)

Wrigley C (2006) Global warming and wheat quality. Cereal Foods World 51, 34–36.

Wu J, Yang X, Wang H, Li H, Li L, Liu W (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theoretical and Applied Genetics 114, 13–20.
The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WltrnN&md5=2ee0708afdf25088e11b904c7c1aecd2CAS | 17031609PubMed |

Xu SS, Jin Y, Klindworth DL, Wang RR-C, Cai X (2009) Evaluation and characterization of seedling resistances to stem rust Ug99 races in wheat–alien species derivatives. Crop Science 49, 2167–2175.
Evaluation and characterization of seedling resistances to stem rust Ug99 races in wheat–alien species derivatives.Crossref | GoogleScholarGoogle Scholar |

Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (Eds) (2011) ‘Crop adaptation to climate change.’ (Wiley-Blackwell: Chichester, UK)

Zhang W, Dubcovsky J (2008) Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theoretical and Applied Genetics 116, 635–645.
Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFCqtbs%3D&md5=d0fb2d2633d204d1f6f82187f14df25cCAS | 18193186PubMed |

Zhang XL, Shen XR, Hao YF, Cai JJ, Ohm HW, Kong L (2011) A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theoretical and Applied Genetics 122, 263–270.
A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFCqsA%3D%3D&md5=f55d1ef621983b8a8cbaa35ef21267a9CAS |