Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Durum wheat (Triticum durum Desf.) in rotation with faba bean (Vicia faba var. minor L.): long-term simulation case study

P. Garofalo A , E. Di Paolo B and M. Rinaldi A C
+ Author Affiliations
- Author Affiliations

A CRA–Unità di Ricerca per lo studio dei Sistemi Colturali degli Ambienti caldo-aridi, Bari, Italy. Email: pasquale.garofalo@entecra.it

B Centro per la Sperimentazione e Divulgazione delle Tecniche Irrigue, Vasto, Italy. Email: dipaolo@cotir.it

C Corresponding author. Email: michele.rinaldi@entecra.it

Crop and Pasture Science 60(3) 240-250 https://doi.org/10.1071/CP08208
Submitted: 23 June 2008  Accepted: 19 December 2008   Published: 16 March 2009

Abstract

The aim of this work was to apply the CropSyst simulation model to evaluate the effect of faba bean cultivation as a break crop in the continuous durum wheat cropping system in southern Italy. The model was previously calibrated and validated for durum wheat and faba bean on data derived from experiments carried out in southern Italy (for different years and treatments), comparing observed and simulated crop growth, yield, soil water, and nitrogen output variables.

The validation showed good agreement between simulated and observed values for cumulative above-ground biomass, green area index, and soil water content for both crops and grain yield for durum wheat; a negative correlation for grain yield in faba bean was observed due to a reduction in harvest index in the well-watered crop, which the model does not simulate well.

Subsequently, a long-term analysis was carried out to study the effects on durum wheat of introducing a legume crop in rotation with the cereal in 2 and 3-year sequences.

A long-term simulation, based on 53 years of daily measured weather data, showed that faba bean, due to a lower level of transpirated water (on average 247 mm for durum wheat and 197 mm for faba bean), allowed for greater soil water availability at durum wheat sowing for the cereal when in rotation with a legume crop (on average, +84 mm/m for durum wheat following the faba bean), with positive effects for nitrogen uptake, above-ground biomass, and grain yield of wheat. The yield increase of wheat when following a faba bean crop was on average +12%, but this effect was amplified in drier years (up to 135%).

In conclusion, the case study offered the potential to confirm the positive results previously obtained in long/medium-term field experiments on the introduction of faba bean in rotation with durum wheat, as well as reduction in the chemical application of nitrogen.

Additional keywords: CropSyst, legumes, cereals, soil water content, soil nitrogen content, Mediterranean environment, grain yield.


Acknowledgments

This work was supported by the Italian Ministry of Agriculture and Forestry Policies under contract no. 209/7393/05 (AQUATER Project).


References


AA. VV (1975–2008) Rete nazionale di prove di confronto tra varietà di frumento duro. L’Informatore Agrario, supplemento “Grano duro” 35.

Bechini L, Bocchi S, Maggiore T, Gonfalonieri R (2006) Parametrization of a crop growth and development simulation model at sub-model components level. An example for winter wheat (Triticum aestivum L.). Environmental Modelling & Software 21, 1042–1054.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bellocchi G, Silvestri N, Mazzoncin M, Menini S (2002) Using the CropSyst model in continuous rainfed maize (Zea mais L.) under alternative management options. Italian Journal of Agronomy 6, 43–56. open url image1

Blair N, Crocker GJ (2000) Crop rotation effects on soil carbon and physical fertility of two Australian soils. Australian Journal of Soil Research 38, 71–84.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chalk PM (1998) Dynamics of biologically fixed N in legume-cereal rotation: a review. Australian Journal of Agricultural Research 49, 303–316.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Confalonieri R, Bechini L (2004) A preliminary evaluation of the simulation model CropSyst for alfalfa. European Journal of Agronomy 21, 223–237.
Crossref | GoogleScholarGoogle Scholar | open url image1

De Vita P, Di Paolo E, Fecondo G, Di Fonzo N, Pisante M (2007) No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil & Tillage Research 92, 69–78.
Crossref | GoogleScholarGoogle Scholar | open url image1

Di Bari V, Rizzo V, Maiorana M, De Giorgio D, Rinaldi M (1993) Variazioni produttive del frumento duro in avvicendamenti annuali e biennali sottoposti a differenti livelli agrotecnici con e senza intercalari. Agricoltura e Ricerca 151/152, 15–22. open url image1

Di Paolo E , Garofalo P , Rinaldi M (2007) Il Favino (Vicia faba var. minor L.) per uso zootecnico sottoposto a regimi irrigui. Calibrazione e validazione del modello CropSyst, Atti del XXXVIII Convegno Nazionale della Società Italiana di Agronomia “Il contributo della ricerca agronomica all’innovazione dei Sistemi colturali mediterranei”, 13–14 Settembre 2007, Catania, pp. 231–232.

Donatelli M, Stöckle CO, Ceotto E, Rinaldi M (1997) Evaluation of CropSyst for cropping systems at two locations of northern and southern Italy. European Journal of Agronomy 6, 35–45.
Crossref |
open url image1

Dou Z, Fox RH, Tot JD (1994) Tillage effect on seasonal nitrogen availability in corn supplied with legume green manures. Plant and Soil 162, 203–210.
Crossref | GoogleScholarGoogle Scholar | open url image1

EC Council (1999) EC Council Regulation, no. 1259/1999, of 17 May 1999. Establishing common rules for direct support schemes under the common agricultural policy. O. J. E. C. Law no. L 160, 26 June 1999.

EC Council (2003) EC Council Regulation, no. 1782/2003, of 29 September 2003. Establishing common rules for direct support schemes under the common agricultural policy and establishing certain support schemes for farmers and amending Reg. no. 2019/93, no. 1452/2001, no. 1453/2001, no. 1454/2001, no. 1868/94, no. 1251/1999, no. 1254/1999, no. 1673/2000, no. 2358/71 and no. 2529/2001. O. J. E. C. Law no. 270 of 21 October 2003.

FAO-UNESCO (1963) Bioclimatic map of the Mediterranean Zone, explanatory notes. Paris, France.

Giardini L, Berti A, Morari F (1998) Simulation of two cropping systems with EPIC and CropSyst models. Italian Journal of Agronomy 1, 29–38. open url image1

Lal R , Regnier E , Eckert DJ , Edwards WM , Hammond R (1991) Expectations of cover crops for sustainable agriculture. In ‘Cover crop for clean water’. (Ed. WL Hargrove) pp. 1–11. (Soil and Water Conservation Society Publ.: Ankey, IO)

Large EC (1953) Growth stages in cereals. Illustrations of the Feek’s scale. Plant Pathology 3, 128–129.
Crossref | GoogleScholarGoogle Scholar | open url image1

Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology 7, 51–73.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Maiorana M, Convertini G, Di Bari V, Rizzo V (1992) Yield and quality of durum wheat (Triticum durum Desf.) under continuous cropping after nine years of straw incorporation. European Journal of Agronomy 1, 11–19. open url image1

Maiorana M, Convertini G, Fornaro F (2004) Gestione del suolo nella omoosuccessione di grano duro. L’Informatore Agrario 33, 79–82. open url image1

Maiorana M, Di Bari V, Convertini G (1993) Interramento dei residui vegetali di frumento duro in monosuccessione con dosi crescenti di azoto fosforo. Effetti sulle componenti quantitative e qualitative della produzione. Agricoltura e Ricerca 151–152, 69–76. open url image1

Maiorana M, Rizzo V, Ventrella D, Convertini G, Ferri D, Colucci R (1997) Interramento e bruciatura dei residui colturali di frumento duro in monosuccessione: effetti di diverse modalità di lavorazione del terreno e di somministrazioni dell’azoto. Agricoltura e Ricerca 168, 49–56. open url image1

Mayer J, Buegger F, Jensen ES, Schloter M, Heb J (2003) Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial process. Plant and Soil 255, 541–554.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B 281, 277–294.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pala M, Stöckle CO, Harris HC (1996) Simulation of durum wheat (Triticum durum Desf.) growth under differential water and nitrogen. Agricultural Systems 51, 147–163.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ranalli P (2001) ‘Leguminose e agricoltura sostenibile, specie da granella e cover crops.’ pp. 628. (Gruppo Calderini – Edagricole s.r.l.: Bologna, Italy)

Rinaldi M, Ventrella D (1997) Uso dei modelli EPIC e CropSyst in sistemi colturali del Sud Italia. Agricoltura e Ricerca 171, 47–58. open url image1

Rizzo V , Di Bari V , Maiorana M , Convertini G , Rinaldi M , De Giorgio D (1990) Effects of the previous crops and continuous cropping on the production of durum wheat and some chemical characteristics of soil. In ‘Proceedings of 1st Congress of European Society of Agronomy’. Paris, 5–7 December, session 5, (Ed. A Scaife) pp. 20–21. (European Society of Agronomy: Colmar Cedex, France)

Russell MP , Hargrov WL (1989) Cropping systems: ecology and management. In ‘Developments in agricultural and managed-forest ecology. 21. Nitrogen management and groundwater protection’. (Ed. RF Follett) pp. 277–317. (Elsevier: Amsterdam, The Netherlands)

Senaratne R, Hardarson G (1988) Estimation of residual N effect of faba bean and pea on two succeeding cereals using 15N methodology. Plant and Soil 110, 81–89.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stöckle CO, Cabelguenne M, Debaeke P (1997) Comparison of CropSyst performance for water management in southwestern France using submodels of different levels of complexity. European Journal of Agronomy 7, 89–98.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stöckle CO, Debaeke P (1997) Modelling crop nitrogen requirements: a critical analysis. European Journal of Agronomy 7, 161–169.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. European Journal of Agronomy 18, 289–307.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tanner CB , Sinclair TR (1983) Efficient water use in crop production: Research or re-search? In ‘Limitations to efficient water use in crop production’. (Eds HM Taylor, WR Jordan, TR Sinclair) pp. 1–27. (ASA, CSSA, SSCA, Inc.: Madison, WI)

USDA (2006) ‘Keys to Soil Taxonomy.’ 10th edn, pp. 333. Available at: ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/keys.pdf.

Ventrella D, Rinaldi M (1999) Comparison between two simulation models to evaluate cropping systems in Southern Italy. Yield response and soil water dynamics. Agricoltura Mediterranea 129, 99–110. open url image1

Ventrella D, Rinaldi M, Rizzo V, Carlone G (1996) Disponibilità idrica del suolo ed efficienza nell’uso dell’acqua in nove avvicendamenti a sussidio idrico limitato. Rivista di Agronomia 30, 1–8. open url image1