Durum wheat (Triticum durum Desf.) in rotation with faba bean (Vicia faba var. minor L.): long-term simulation case study
P. Garofalo A , E. Di Paolo B and M. Rinaldi A CA CRA–Unità di Ricerca per lo studio dei Sistemi Colturali degli Ambienti caldo-aridi, Bari, Italy. Email: pasquale.garofalo@entecra.it
B Centro per la Sperimentazione e Divulgazione delle Tecniche Irrigue, Vasto, Italy. Email: dipaolo@cotir.it
C Corresponding author. Email: michele.rinaldi@entecra.it
Crop and Pasture Science 60(3) 240-250 https://doi.org/10.1071/CP08208
Submitted: 23 June 2008 Accepted: 19 December 2008 Published: 16 March 2009
Abstract
The aim of this work was to apply the CropSyst simulation model to evaluate the effect of faba bean cultivation as a break crop in the continuous durum wheat cropping system in southern Italy. The model was previously calibrated and validated for durum wheat and faba bean on data derived from experiments carried out in southern Italy (for different years and treatments), comparing observed and simulated crop growth, yield, soil water, and nitrogen output variables.
The validation showed good agreement between simulated and observed values for cumulative above-ground biomass, green area index, and soil water content for both crops and grain yield for durum wheat; a negative correlation for grain yield in faba bean was observed due to a reduction in harvest index in the well-watered crop, which the model does not simulate well.
Subsequently, a long-term analysis was carried out to study the effects on durum wheat of introducing a legume crop in rotation with the cereal in 2 and 3-year sequences.
A long-term simulation, based on 53 years of daily measured weather data, showed that faba bean, due to a lower level of transpirated water (on average 247 mm for durum wheat and 197 mm for faba bean), allowed for greater soil water availability at durum wheat sowing for the cereal when in rotation with a legume crop (on average, +84 mm/m for durum wheat following the faba bean), with positive effects for nitrogen uptake, above-ground biomass, and grain yield of wheat. The yield increase of wheat when following a faba bean crop was on average +12%, but this effect was amplified in drier years (up to 135%).
In conclusion, the case study offered the potential to confirm the positive results previously obtained in long/medium-term field experiments on the introduction of faba bean in rotation with durum wheat, as well as reduction in the chemical application of nitrogen.
Additional keywords: CropSyst, legumes, cereals, soil water content, soil nitrogen content, Mediterranean environment, grain yield.
Acknowledgments
This work was supported by the Italian Ministry of Agriculture and Forestry Policies under contract no. 209/7393/05 (AQUATER Project).
Bechini L,
Bocchi S,
Maggiore T, Gonfalonieri R
(2006) Parametrization of a crop growth and development simulation model at sub-model components level. An example for winter wheat (Triticum aestivum L.). Environmental Modelling & Software 21, 1042–1054.
| Crossref | GoogleScholarGoogle Scholar |
Bellocchi G,
Silvestri N,
Mazzoncin M, Menini S
(2002) Using the CropSyst model in continuous rainfed maize (Zea mais L.) under alternative management options. Italian Journal of Agronomy 6, 43–56.
Blair N, Crocker GJ
(2000) Crop rotation effects on soil carbon and physical fertility of two Australian soils. Australian Journal of Soil Research 38, 71–84.
| Crossref | GoogleScholarGoogle Scholar |
Chalk PM
(1998) Dynamics of biologically fixed N in legume-cereal rotation: a review. Australian Journal of Agricultural Research 49, 303–316.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Confalonieri R, Bechini L
(2004) A preliminary evaluation of the simulation model CropSyst for alfalfa. European Journal of Agronomy 21, 223–237.
| Crossref | GoogleScholarGoogle Scholar |
De Vita P,
Di Paolo E,
Fecondo G,
Di Fonzo N, Pisante M
(2007) No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil & Tillage Research 92, 69–78.
| Crossref | GoogleScholarGoogle Scholar |
Di Bari V,
Rizzo V,
Maiorana M,
De Giorgio D, Rinaldi M
(1993) Variazioni produttive del frumento duro in avvicendamenti annuali e biennali sottoposti a differenti livelli agrotecnici con e senza intercalari. Agricoltura e Ricerca 151/152, 15–22.
Donatelli M,
Stöckle CO,
Ceotto E, Rinaldi M
(1997) Evaluation of CropSyst for cropping systems at two locations of northern and southern Italy. European Journal of Agronomy 6, 35–45.
| Crossref |
Dou Z,
Fox RH, Tot JD
(1994) Tillage effect on seasonal nitrogen availability in corn supplied with legume green manures. Plant and Soil 162, 203–210.
| Crossref | GoogleScholarGoogle Scholar |
Giardini L,
Berti A, Morari F
(1998) Simulation of two cropping systems with EPIC and CropSyst models. Italian Journal of Agronomy 1, 29–38.
Large EC
(1953) Growth stages in cereals. Illustrations of the Feek’s scale. Plant Pathology 3, 128–129.
| Crossref | GoogleScholarGoogle Scholar |
Loague K, Green RE
(1991) Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology 7, 51–73.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Maiorana M,
Convertini G,
Di Bari V, Rizzo V
(1992) Yield and quality of durum wheat (Triticum durum Desf.) under continuous cropping after nine years of straw incorporation. European Journal of Agronomy 1, 11–19.
Maiorana M,
Convertini G, Fornaro F
(2004) Gestione del suolo nella omoosuccessione di grano duro. L’Informatore Agrario 33, 79–82.
Maiorana M,
Di Bari V, Convertini G
(1993) Interramento dei residui vegetali di frumento duro in monosuccessione con dosi crescenti di azoto fosforo. Effetti sulle componenti quantitative e qualitative della produzione. Agricoltura e Ricerca 151–152, 69–76.
Maiorana M,
Rizzo V,
Ventrella D,
Convertini G,
Ferri D, Colucci R
(1997) Interramento e bruciatura dei residui colturali di frumento duro in monosuccessione: effetti di diverse modalità di lavorazione del terreno e di somministrazioni dell’azoto. Agricoltura e Ricerca 168, 49–56.
Mayer J,
Buegger F,
Jensen ES,
Schloter M, Heb J
(2003) Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial process. Plant and Soil 255, 541–554.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Monteith JL
(1977) Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B 281, 277–294.
| Crossref | GoogleScholarGoogle Scholar |
Pala M,
Stöckle CO, Harris HC
(1996) Simulation of durum wheat (Triticum durum Desf.) growth under differential water and nitrogen. Agricultural Systems 51, 147–163.
| Crossref | GoogleScholarGoogle Scholar |
Rinaldi M, Ventrella D
(1997) Uso dei modelli EPIC e CropSyst in sistemi colturali del Sud Italia. Agricoltura e Ricerca 171, 47–58.
Senaratne R, Hardarson G
(1988) Estimation of residual N effect of faba bean and pea on two succeeding cereals using 15N methodology. Plant and Soil 110, 81–89.
| Crossref | GoogleScholarGoogle Scholar |
Stöckle CO,
Cabelguenne M, Debaeke P
(1997) Comparison of CropSyst performance for water management in southwestern France using submodels of different levels of complexity. European Journal of Agronomy 7, 89–98.
| Crossref | GoogleScholarGoogle Scholar |
Stöckle CO, Debaeke P
(1997) Modelling crop nitrogen requirements: a critical analysis. European Journal of Agronomy 7, 161–169.
| Crossref | GoogleScholarGoogle Scholar |
Stöckle CO,
Donatelli M, Nelson R
(2003) CropSyst, a cropping systems simulation model. European Journal of Agronomy 18, 289–307.
| Crossref | GoogleScholarGoogle Scholar |
Ventrella D, Rinaldi M
(1999) Comparison between two simulation models to evaluate cropping systems in Southern Italy. Yield response and soil water dynamics. Agricoltura Mediterranea 129, 99–110.
Ventrella D,
Rinaldi M,
Rizzo V, Carlone G
(1996) Disponibilità idrica del suolo ed efficienza nell’uso dell’acqua in nove avvicendamenti a sussidio idrico limitato. Rivista di Agronomia 30, 1–8.