Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Exploring the use of the pentaphenylcyclopentadienyl ligand in uranium chemistry: the crystal structure of (C5Ph5)UI2(THF)2

Justin C. Wedal https://orcid.org/0000-0003-0437-8601 A , Joseph W. Ziller https://orcid.org/0000-0001-7404-950X A and William J. Evans https://orcid.org/0000-0002-0651-418X A *
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.

* Correspondence to: wevans@uci.edu

Handling Editor: George Koutsantonis

Australian Journal of Chemistry 75(9) 581-586 https://doi.org/10.1071/CH21318
Submitted: 2 December 2021  Accepted: 12 January 2022   Published: 24 March 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The reaction of UI3 with NaC5Ph5 in THF generated (η5-C5Ph5)UI2(THF)2 which was characterized by X-ray crystallography. The complex has a four-legged piano stool structure with a 2.539 Å U– (C5Ph5 ring centroid) distance that is slightly longer than the 2.504 Å distance in (η5-C5Me5)UI2(THF)3 which has a larger formal coordination number. Although the synthesis of the mono-cyclopentadienyl complex was facile, no bis-cyclopentadienyl complexes were isolated from reactions using two equivalents of the pentaphenylcyclopentadienyl ligand per uranium. In one UI3/2NaC5Ph5 synthesis, the X-ray crystal structure of (THF)3Na(η5-C5Ph5) was obtained. Attempts to reduce (η5-C5Ph5)UI2(THF)2 did not give evidence for a UII product. KC8 reductions of the in situ reaction of NdI3 and NaC5Ph5, analogous to the synthesis of (η5-C5Ph5)UI2(THF)2, yielded an X-ray crystal structure of a solvent-separated ion pair (SSIP), [K(18-crown-6)(THF)2][C5Ph5].

Keywords: complexes, coordination compounds, crystallography, cyclopentadienyl ligands, iodide, ion pairs, pentaphenylcyclopentadienyl, uranium.


References

[1]  RP Kelly, TDM Bell, RP Cox, DP Daniels, GB Deacon, F Jaroschik, PC Junk, XF Le, G Lemercier, A Martinez, J Wang, D Werner, XF Le Goff, G Lemercier, A Martinez, J Wang, D Werner, Organometallics 2015, 34, 5624.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  GB Deacon, CM Forsyth, F Jaroschik, PC Junk, DL Kay, T Maschmeyer, AF Masters, J Wang, LD Field, Organometallics 2008, 27, 4772.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  CM Forsyth, GB Deacon, LD Field, C Jones, PC Junk, DL Kay, AF Masters, AF Richards, Chem Commun 2006, 2, 1003.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  MJ Heeg, C Janiak, JJ Zuckerman, J Am Chem Soc 1984, 106, 4259.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  U Behrens, F Edelmann, Z Naturforsch B 1986, 41, 1426.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  JW Chambers, MD Rausch, AJ Baskar, SG Bott, JL Atwood, Organometallics 1986, 5, 1635.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  MJ Heeg, RH Herber, C Janiak, JJ Zuckerman, H Schumann, WF Manders, J Organomet Chem 1988, 346, 321.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M Huhn, W Kläui, L Ramacher, R Herbst-Irmer, E Egert, J Organomet Chem 1990, 398, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  U Thewalt, G Schmid, J Organomet Chem 1991, 412, 343.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  T Tanase, T Fukushima, T Nomura, Y Yamamoto, K Kobayashi, Inorg Chem 1994, 33, 32.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  LD Field, TW Hambley, PA Humphrey, AF Masters, P Turner, Polyhedron 1998, 17, 2587.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  DL Greene, OA Villalta, DM Macias, A Gonzalez, W Tikkanen, B Schick, K Kantardjieff, Inorg Chem Commun 1999, 2, 311.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  B Martín-Matute, M Edin, K Bogár, FB Kaynak, JE Bäckvall, J Am Chem Soc 2005, 127, 8817.
         | Crossref | GoogleScholarGoogle Scholar | 15954789PubMed |

[14]  A Sivaramakrishna, H Su, JR Moss, J Chem Soc Dalton Trans 2008, 2228.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J Spencer, J Amin, P Coxhead, J McGeehan, CJ Richards, GJ Tizzard, SJ Coles, JP Bingham, JA Hartley, L Feng, E Meggers, M Guille, Organometallics 2011, 30, 3177.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  G Qin, Y Wang, X Shi, I Del Rosal, L Maron, J Cheng, Chem Commun 2019, 55, 8560.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  PJ Fagan, JM Manriquez, EA Maatta, AM Seyam, TJ Marks, J Am Chem Soc 1981, 103, 6650.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  TJ Marks, Science 1982, 217, 989.
         | Crossref | GoogleScholarGoogle Scholar | 17839316PubMed |

[19]  AL Wayda, WJ Evans, J Am Chem Soc 1980, 19, 2190.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  PL Watson, JF Whitney, RL Harlow, Inorg Chem 1981, 20, 3271.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  TD Tilley, RA Andersen, Inorg Chem 1981, 20, 3267.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  H Schumann, JA Meese-Marktscheffel, L Esser, Chem Rev 1995, 95, 865.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  WJ Evans, BL Davis, JW Ziller, Inorg Chem 2001, 40, 6341.
         | Crossref | GoogleScholarGoogle Scholar | 11720485PubMed |

[24]  D Cui, O Tardif, Z Hou, J Am Chem Soc 2004, 126, 1312.
         | Crossref | GoogleScholarGoogle Scholar | 14759168PubMed |

[25]  D Robert, TP Spaniol, J Okuda, Eur J Inorg Chem 2008, 2008, 2801.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  N Tsoureas, OT Summerscales, FGN Cloke, SM Roe, Organometallics 2013, 32, 1353.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  S-S Liu, L Xu, S-D Jiang, Y-Q Zhang, Y-S Meng, Z Wang, B-W Wang, W-X Zhang, Z Xi, S Gao, Inorg Chem 2015, 54, 5162.
         | Crossref | GoogleScholarGoogle Scholar | 25992668PubMed |

[28]  NA Siladke, J Leduc, JW Ziller, WJ Evans, Chem Eur J 2012, 18, 14820.
         | Crossref | GoogleScholarGoogle Scholar | 23047764PubMed |

[29]  WJ Evans, NA Siladke, JW Ziller, Chem Eur J 2010, 16, 796.
         | Crossref | GoogleScholarGoogle Scholar | 19957318PubMed |

[30]  WJ Evans, NA Siladke, JW Ziller, C R Chimie 2010, 13, 775.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  H Sitzmann, T Dezember, O Schmitt, F Weber, G Wolmersha, M Ruck, G Wolmershäuser, M Ruck, Z Anorg Allg Chem 2000, 626, 2241.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  K Randall McClain, CA Gould, K Chakarawet, SJ Teat, TJ Groshens, JR Long, BG Harvey, Chem Sci 2018, 9, 8492.
         | Crossref | GoogleScholarGoogle Scholar | 30568773PubMed |

[33]  CA Gould, KR McClain, JM Yu, TJ Groshens, F Furche, BG Harvey, JR Long, J Am Chem Soc 2019, 141, 12967.
         | Crossref | GoogleScholarGoogle Scholar | 31375028PubMed |

[34]  FS Guo, N Tsoureas, GZ Huang, ML Tong, A Mansikkamäki, RA Layfield, Angew Chem Int Ed 2020, 59, 2299.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  MacDonald MR, Fieser ME, Bates JE, Ziller JW, Furche F, Evans WJ. J Am Chem Soc 2013; 135: 13310.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  HS La Pierre, A Scheurer, FW Heinemann, W Hieringer, K Meyer, Angew Chem Int Ed 2014, 53, 7158.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  CJ Windorff, MR MacDonald, KR Meihaus, JW Ziller, JR Long, WJ Evans, Chem Eur J 2016, 22, 772.
         | Crossref | GoogleScholarGoogle Scholar | 26636775PubMed |

[38]  BS Billow, BN Livesay, CC Mokhtarzadeh, J Mccracken, MP Shores, JM Boncella, AL Odom, J Am Chem Soc 2018, 140, 17369.
         | Crossref | GoogleScholarGoogle Scholar | 30500184PubMed |

[39]  AJ Ryan, MA Angadol, JW Ziller, WJ Evans, Chem Commun 2019, 55, 2325.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  JC Wedal, S Bekoe, JW Ziller, F Furche, WJ Evans, Organometallics 2020, 39, 3425.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  WJ Evans, SA Kozimor, JW Ziller, Inorg Chem 2005, 44, 7960.
         | Crossref | GoogleScholarGoogle Scholar | 16241146PubMed |

[42]  LR Avens, CJ Burns, RJ Butcher, DL Clark, JC Gordon, AR Schake, BL Scott, JG Watkin, BD Zwick, Organometallics 2000, 19, 451.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  JJ Kiernicki, BS Newell, EM Matson, NH Anderson, PE Fanwick, MP Shores, SC Bart, Inorg Chem 2014, 53, 3730.
         | Crossref | GoogleScholarGoogle Scholar | 24611564PubMed |

[44]  DA Bardonov, PD Komarov, VI Ovchinnikova, LN Puntus, ME Minyaev, IE Nifant’ev, KA Lyssenko, VM Korshunov, IV Taidakov, DM Roitershtein, Organometallics 2021, 40, 1235.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  L Orzechowski, DFJ Piesik, C Ruspic, S Harder, J Chem Soc Dalton Trans 2008, 4742.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  C Ruspic, JR Moss, M Schürmann, S Harder, Angew Chem Int Ed 2008, 47, 2121.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  GR Giesbrecht, JC Gordon, DL Clark, BL Scott, Dalton Trans 2003, 2658.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  X Shi, G Qin, Y Wang, L Zhao, Z Liu, J Cheng, Angew Chem Int Ed 2019, 58, 4356.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  Y Schulte, H Weinert, C Wölper, S Schulz, Organometallics 2020, 39, 206.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  RD Shannon, Acta Crystallogr Sect A 1976, 32, 751.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  K Izod, ST Liddle, W Clegg, Inorg Chem 2004, 43, 214.
         | Crossref | GoogleScholarGoogle Scholar | 14704070PubMed |

[52]  DE Bergbreiter, JM Killough, J Am Chem Soc 1978, 100, 2126.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  CD Carmichael, NA Jones, PL Arnold, Inorg Chem 2008, 47, 8577.
         | Crossref | GoogleScholarGoogle Scholar | 18763760PubMed |

[54]  R Zhang, M Tsutsui, DE Bergbreiter, J Organomet Chem 1982, 229, 109.
         | Crossref | GoogleScholarGoogle Scholar |