Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Monometallic Ln3+ and heterometallic Ln3+–Cd2+complexes based on pentafluorophenylacetic acid: efficient control of dimension and luminescent properties

Y. A. Belousov https://orcid.org/0000-0002-4976-4437 A B * , M. A. Kiskin C , A. V. Sidoruk A , E. A. Varaksina B , M. A. Shmelev C , N. V. Gogoleva C , I. V. Taydakov B D and I. L. Eremenko C
+ Author Affiliations
- Author Affiliations

A Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia.

B P. N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow 119991, Russia.

C Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.

D G. V. Plekhanov Russian University of Economics, Moscow 117997, Russia.

* Correspondence to: belousov@inorg.chem.msu.ru

Handling Editor: George Koutsantonis

Australian Journal of Chemistry 75(9) 572-580 https://doi.org/10.1071/CH21333
Submitted: 15 December 2021  Accepted: 6 January 2022   Published: 14 February 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Four new complexes [Ln(pfaa)3(H2O)2]n (Ln = Eu (1), Tb (2)) and [Ln2Cd2(pfaa)10 (phen)2(EtOH)2]·2MeCN (Ln = Eu (3), Tb (4), phen = 1,10-phenanthroline) based on pentaphorphenylacetic acid (Hpfaa) have been prepared and completely investigated. The structures of compounds 1 and 3 were studied by single crystal X-ray diffraction analysis: the isostructural complexes 1 and 2 represent 1D coordination polymer, while the isostructural complexes 3 and 4 are molecular compounds. Complexes 1–4 show strong lanthanide-centred luminescence, since the introduction of phenanthroline leads to a significant increase in the observed lifetime (τobs) and photoluminescent quantum yield.

Keywords: cadmium, carboxylates, carboxylic acids, crystal structure, europium, lanthanides, luminescence, MOF, terbium.


References

[1]  F Zinna, M Pasini, F Galeotti, C Botta, L Di Bari, U Giovanella, Adv Funct Mater 27, 1603719.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Álvarez ÁL, Coya C. OLEDs based on Ln(III) complexes for near-infrared emission. Elsevier; 2018. https://doi.org/
| Crossref |

[3]  M Pan, WM Liao, SY Yin, SS Sun, CY Su, Chem Rev 2018, 118, 8889.
         | Crossref | GoogleScholarGoogle Scholar | 30130099PubMed |

[4]  DA Kordeyro Magrino, VM Korshunov, KA Lyssenko, VE Gontcharenko, YA Belousov, C Pettinari, IV Taydakov, Inorganica Chim Acta 2020, 510, 119764.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  MV DaCosta, S Doughan, Y Han, UJ Krull, Anal Chim Acta 2014, 832, 1.
         | Crossref | GoogleScholarGoogle Scholar | 24890691PubMed |

[6]  Bünzli JCG. Luminescence Bioimaging with Lanthanide Complexes. Wiley; 2014. https://doi.org/
| Crossref |

[7]  Y Ning, M Zhu, JL Zhang, Coord Chem Rev 2019, 399, 213028.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Brites CDS, Millán A, Carlos LD. Handbook on the Physics and Chemistry of Rare Earths. Vol. 49 . Elsevier B.V; 2016. pp. 339–427.

[9]  CDS Brites, S Balabhadra, LD Carlos, Adv Opt Mater 2019, 7, 1801239.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  K Staszak, K Wieszczycka, V Marturano, B Tylkowski, Coord Chem Rev 2019, 397, 76.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  ML Aulsebrook, B Graham, MR Grace, KL Tuck, Coord Chem Rev 2018, 375, 191.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  VE Gontcharenko, AM Lunev, IV Taydakov, VM Korshunov, AA Drozdov, YA Belousov, IEEE Sens J 2019, 19, 7365.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  PC Andrews, GB Deacon, WJ Gee, PC Junk, A Urbatsch, Eur J Inorg Chem 2012, 3273.

[14]  M Chen, WM Xu, Aust J Chem 2019, 72, 910.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  JH Jia, QW Li, YC Chen, JL Liu, ML Tong, Coord Chem Rev 2019, 378, 365.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  DN Woodruff, REP Winpenny, RA Layfield, Chem Rev 2013, 113, 5110.
         | Crossref | GoogleScholarGoogle Scholar | 23550940PubMed |

[17]  ES Bazhina, AA Bovkunova, AV Medved’ko, EA Varaksina, IV Taidakov, NN Efimov, MA Kiskin, IL Eremenko, Chem - An Asian J 2018, 13, 2060.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  SI Weissman, J Chem Phys 1942, 10, 214.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Bünzli JCG., Eliseeva SV Basics of Lanthanide Photophysics. In: Hänninen P, Härmä H, editors. Lanthanide Luminescence. Springer Series on Fluorescence (Methods and Applications), vol 7. Springer, Berlin, Heidelberg; 2010. https://doi.org/
| Crossref |

[20]  JCG Bünzli, C Piguet, Chem Rev 2002, 102, 1897.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Y Wang, PP Shen, N Ren, JJ Zhang, LN Geng, SP Wang, SK Shi, RSC Adv 2016, 6, 70770.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  VI Tsaryuk, AV Vologzhanina, KP Zhuravlev, VA Kudryashova, J Fluor Chem 2017, 197, 87.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  T Behrsing, GB Deacon, PC Junk, BW Skelton, AH White, Zeitschrift fur Anorg und Allg Chemie 2010, 636, 2372.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  X Huang, H Sun, J Dou, D Li, D Wang, G Liu, J Coord Chem 2007, 60, 2045.

[25]  EJ Gao, JQ Su, HT Jin, SJ Liu, FC Zhao, Y Meng, XY Ma, J Ge, YG Sun, W Zhang, MC Zhu, J Photochem Photobiol B Biol 2017, 170, 173.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Y Bai, B Yan, Z Chen, J Coord Chem 2005, 58, 841.

[27]  E Mottram, S Hamilton, JS Moon, J Wang, G Bousrez, AE Somers, GB Deacon, PC Junk, J Coord Chem 2020, 73, 2677.

[28]  C Wang, Y Ju, Y Li, Y Zhang, X Li, J Rare Earths 2008, 26, 22.

[29]  ZY Li, YL Xu, XF Zhang, B Zhai, FL Zhang, JJ Zhang, C Zhang, SZ Li, GX Cao, Dalt Trans 2017, 46, 16485.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  C Chen, S Zhang, H Song, W Shi, B Zhao, P Cheng, Inorganica Chim Acta 2009, 362, 2749.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  GB Deacon, PC Junk, WW Lee, M Forsyth, J Wang, New J Chem 2015, 39, 7688.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  D Ang, GB Deacon, PC Junk, DR Turner, Polyhedron 2007, 26, 385.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  PA Demakov, AA Vasileva, VA Lazarenko, AA Ryadun, VP Fedin, Crystals 2021, 11, 1375.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  H Yu, Q Liu, J Li, ZM Su, X Li, X Wang, J Sun, C Zhou, X Hu, J Mater Chem C 2021, 9, 562.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  R Janicki, A Mondry, P Starynowicz, Coord Chem Rev 2017, 340, 98.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  Y Cui, B Chen, G Qian, Coord Chem Rev 2014, 273–274, 76.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  YA Belousov, AA Drozdov, IV Taydakov, F Marchetti, R Pettinari, C Pettinari, Coord Chem Rev 2021, 445, 214084.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  M Latva, H Takalob, VM Mukkala, C Matachescu, JC Rodríguez-Ubis, J Kankare, J Lumin 1997, 75, 149.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  M Sobieray, J Gode, C Seidel, M Poß, C Feldmann, U Ruschewitz, Dalt Trans 2015, 44, 6249.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  VE Gontcharenko, MA Kiskin, VD Dolzhenko, VM Korshunov, IV Taydakov, YA Belousov, Molecules 2021, 26, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  AV Safronova, LN Bochkarev and EV Baranov, Russ J Coord Chem Khimiya, 2015, 41 , 118–128.

[42]  Y Ning, YW Liu, YS Meng, JL Zhang, Inorg Chem 2018, 57, 1332.
         | Crossref | GoogleScholarGoogle Scholar | 29336570PubMed |

[43]  MA Shmelev, MA Kiskin, JK Voronina, KA Babeshkin, NN Efimov, EA Varaksina, VM Korshunov, IV Taydakov, NV Gogoleva, AA Sidorov, IL Eremenko, Materials (Basel) 2020, 13, 1.

[44]  M Gielen, ERT Tiekink, Zeitschrift für Krist - New Cryst Struct 2000, 215, 255.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  ERT Tiekink, M Gielen, A Bouhdid, M Biesemans, R Willem, J Organomet Chem 1995, 494, 247.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  NV Gogoleva, MA Shmelev, MA Kiskin, AG Starikov, AA Sidorov, IL Eremenko, Russ J Coord Chem Khimiya 2021, 47, 261.

[47]  E Szłyk, I Łakomska, A Grodzicki, Thermochim Acta 1993, 223, 207.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  TV Lysyak, SL Rusakov, IS Kolomnikov, YY Kharitonov, Zhurnal Neorg Khimii 1983, 28, 1339.

[49]  H Barrow, DA Brown, NW Alcock, HJ Clase, MGH Wallbridge, J Chem Soc, Chem Commun 1995, 0, 1231.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  SMART (Control) Software, Version 5.0, Bruker AXS Inc., Madison, WI, 1997.

[51]  SAINT (Integration) Software, Version 5.0, Bruker AXS Inc., Madison, WI, 1997.

[52]  L Krause, R Herbst-Irmer, GM Sheldrick, D Stalke, J Appl Crystallogr 2015, 48, 3.
         | Crossref | GoogleScholarGoogle Scholar | 26089746PubMed |

[53]  OV Dolomanov, LJ Bourhis, RJ Gildea, JAK Howard, H Puschmann, J Appl Crystallogr 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  GM Sheldrick, Acta Crystallogr Sect C Struct Chem 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  LJ Bourhis, OV Dolomanov, RJ Gildea, JAK Howard, H Puschmann, Acta Crystallogr Sect A Found Adv 2015, 71, 59.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  Llunell M, Casanova D, Cirera J, Alemany P, Alvarez S, 2013, SHAPE v.2.1. Program for the stereochemical analys.

[57]  AL Spek, Acta Crystallogr Sect C Struct Chem 2015, 71, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  IV Taydakov, MA Kiskin, Beilstein J Org Chem 16, 1863.

[59]  H Bußkamp, GB Deacon, M Hilder, PC Junk, UH Kynast, WW Lee, DR Turner, CrystEngComm 2007, 9, 394.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  F Luo, YM Song, HX Huang, XZ Tian, GM Sun, Y Zhu, XF Feng, Aust J Chem 2012, 65, 1436.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  MA Shmelev, NV Gogoleva, FM Dolgushin, KA Lyssenko, MA Kiskin, EA Varaksina, IV Taidakov, AA Sidorov, IL Eremenko, Russ J Coord Chem Khimiya 2020, 46, 493.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  YX Chi, SY Niu, J Jin, R Wang, Y Li, J Chem Soc Dalt Trans 2009, 7653.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  AS Kalyakina, VV Utochnikova, IS Bushmarinov, IV Ananyev, IL Eremenko, D Volz, F Rönicke, U Schepers, R Van Deun, AL Trigub, YV Zubavichus, NP Kuzmina, S Bräse, Chem - A Eur J 2015, 21, 17921.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  MHV Werts, RTF Jukes, JW Verhoeven, Phys Chem Chem Phys 2002, 4, 1542.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  MA Shmelev, NV Gogoleva, AA Sidorov, MA Kiskin, JK Voronina, YV Nelyubina, EA Varaksina, VM Korshunov, IV Taydakov, IL Eremenko, Inorganica Chim Acta 2021, 515, 120050.
         | Crossref | GoogleScholarGoogle Scholar |

[66]  MA Shmelev, NV Gogoleva, AA Sidorov, YA Nelyubina, FM Dolgushin, YK Voronina, MA Kiskin, GG Aleksandrov, EA Varaksina, IV Taydakov, IL Eremenko, ChemistrySelect 2020, 5, 8475.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  A Døssing, Eur J Inorg Chem 2005, 1425.

[68]  CB Layne, WH Lowdermilk, MJ Weber, Phys Rev B 1977, 16, 10.
         | Crossref | GoogleScholarGoogle Scholar |