Crystal structure of the dodecanuclear coordination compounds [RE12(DMF)24(HCOO)8(OH)16]I3·4DMF (RE = Eu, Nd)
Frank Tambornino A and Constantin Hoch B *A Fachbereich Chemie, Philips-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
B Department Chemie, LMU München, Butenandtstraße 5-13 (D), D-81377 München, Germany.
Australian Journal of Chemistry 75(9) 587-594 https://doi.org/10.1071/CH21336
Submitted: 16 December 2021 Accepted: 12 January 2022 Published: 31 March 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
By slow hydrolysis of solutions of [Eu(DMF)8]I3 or [Nd(DMF)8]I3 in dimethylformamide (DMF), single crystals of the coordination compounds [RE12(DMF)24 (HCOO)8(OH)16]I3·4DMF (RE = Eu, Nd) were obtained. Both compounds crystallise isotypically in a tetragonal structure with space group I422 (No. 97, Z = 2, a = 21.881(3), 21.6340(10) and c = 20.873(2), 21.0612(9) Å for Nd and Eu compounds, respectively). The crystal structure shows a [RE12O56] core unit with O atoms from formate and hydroxide anions μ3-bridging the metal centres. The dodecanuclear cationic units are arranged in a body-centred packing topology, surrounded by iodide anions in a β cage pattern. Rietveld refinement confirmed the structure model, and the presence of hydroxide anions was shown by FT-IR spectroscopy. Susceptibility measurements on the Nd compound showed paramagnetic behaviour and a temperature dependence of μeff typical for trivalent Nd cations.
Keywords: crystal structure, dodecanuclear complexes, formates, N,N-dimethylformamide, rare earth metals, single molecule magnets, susceptibility, vibrational spectroscopy.
References
[1] SMJ Aubin, MW Wemple, DM Adams, H-L Tsai, G Christou, DN Hendrickson, J Am Chem Soc 1996, 118, 7746.| Crossref | GoogleScholarGoogle Scholar |
[2] Song Y. High Density Data Storage, Principle, Technology, and Materials. Singapore: World Scientific; 2009. ISBN-13: 978-9812834690
[3] M Atzori, L Tesi, E Morra, M Chiesa, L Sorace, R Sessoli, J Am Chem Soc 2016, 138, 2154.
| Crossref | GoogleScholarGoogle Scholar | 26853512PubMed |
[4] H-L Gao, L Jiang, W-M Wang, S-Y Wang, H-X Zhang, J-Z Cui, Inorg Chem 2016, 55, 8898.
| Crossref | GoogleScholarGoogle Scholar | 27560459PubMed |
[5] M Evangelisti, EK Brechin, Dalton Trans 2010, 39, 4672.
| Crossref | GoogleScholarGoogle Scholar | 21488263PubMed |
[6] T Lis, Acta Crystallogr 1980, 36, 2042.
| Crossref | GoogleScholarGoogle Scholar |
[7] A Caneschi, D Gatteschi, R Sessoli, AL Barra, LC Brunel, M Guillot, J Am Chem Soc 1991, 113, 5873.
| Crossref | GoogleScholarGoogle Scholar |
[8] R Sessoli, HL Tsai, AR Schake, S Wang, JB Vincent, K Folting, D Gatteschi, G Christou, DN Hendrickson, J Am Chem Soc 1993, 115, 1804.
| Crossref | GoogleScholarGoogle Scholar |
[9] A Zabala-Lekuona, JM Seco, E Colacio, Coord Chem Rev 2021, 441, 213984.
| Crossref | GoogleScholarGoogle Scholar |
[10] DN Woodruff, REP Winpenny, RA Layfield, Chem Rev 2013, 113, 5110.
| Crossref | GoogleScholarGoogle Scholar | 23550940PubMed |
[11] AJ Tasiopoulos, A Vinslava, W Wernsdorfer, KA Abboud, G Christou, Angew Chem Int Ed 2004, 43, 2117.
| Crossref | GoogleScholarGoogle Scholar |
[12] D Gatteschi, R Sessoli, A Cornia, Chem Commun 2000, 9, 725.
| Crossref | GoogleScholarGoogle Scholar |
[13] REP Winpenny, J Chem Soc, Dalton Trans 2002, 1, 1.
| Crossref | GoogleScholarGoogle Scholar |
[14] CJ Milios, A Vinslava, W Wernsdorfer, S Moggach, S Parsons, SP Perlepes, G Christou, EK Brechin, J Am Chem Soc 2007, 129, 2754.
| Crossref | GoogleScholarGoogle Scholar | 17309264PubMed |
[15] C Hoch, Z Kristallogr 2020, 235, 401.
| Crossref | GoogleScholarGoogle Scholar |
[16] F Tambornino, C Hoch, Z Anorg Allg Chem 2015, 641, 537.
| Crossref | GoogleScholarGoogle Scholar |
[17] F Tambornino, C Hoch, Z Kristallogr 2017, 232, 557.
| Crossref | GoogleScholarGoogle Scholar |
[18] F Tambornino, J Sappl, F Pultar, TM Cong, S Hübner, T Giftthaler, C Hoch, Inorg Chem 2016, 55, 11551.
| Crossref | GoogleScholarGoogle Scholar | 27723311PubMed |
[19] D Shengjun, Z Ning, X Weiming, C Chao, Z Kristallogr NCS 2009, 224, 275.
| Crossref | GoogleScholarGoogle Scholar |
[20] P Samarasekere, X Wang, W Kaveevivitchai, AJ Jacobson, Cryst Growth Des 2015, 15, 1119.
| Crossref | GoogleScholarGoogle Scholar |
[21] Lueken H. Magnetochemie. Wiesbaden (Germany): Vieweg+Teubner; 1999. ISBN: 978-3-322-80118-0
[22] JF Elliott, S Legvold, FH Spedding, Phys Rev 1954, 94, 50.
| Crossref | GoogleScholarGoogle Scholar |
[23] G Liu, B Yuan, N Zhang, X Gong, J Appl Phys 1995, 78, 4054.
| Crossref | GoogleScholarGoogle Scholar |
[24] H De Leebeeck, C Görller-Walrand, R Saez-Puche, J Alloys Compd 1998, 280, 1.
| Crossref | GoogleScholarGoogle Scholar |
[25] N Ishikawa, M Sugita, T Ishikawa, SY Koshihara, Y Kaizu, J Am Chem Soc 2003, 29, 8694.
| Crossref | GoogleScholarGoogle Scholar |
[26] CA Gould, KR McClain, JM Yu, TJ Groshens, F Furche, BG Harvey, JR Long, J Am Chem Soc 2019, 141, 12967.
| Crossref | GoogleScholarGoogle Scholar | 31375028PubMed |
[27] F-S Gui, BM Day, Y-C Chen, M-L Tong, A Maniskkamäki, RA Layfield, Science 2018, 362, 1400.
| Crossref | GoogleScholarGoogle Scholar |
[28] JD Rinehart, M Fang, WJ Evans, JR Long, J Am Chem Soc 2011, 133, 14236.
| Crossref | GoogleScholarGoogle Scholar | 21838285PubMed |
[29] AL Spek, J Appl Cryst 2003, 36, 7.
| Crossref | GoogleScholarGoogle Scholar |
[30] GM Sheldrick, Acta Crystallogr 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[31] Tambornino F. Dissertation, LMU München, 2016.
| Crossref |
[32] John Wiley & Sons, Inc. SpectraBase. 2001. Available at https://spectrabase.com/ [Accessed 13 December 2021]
[33] MB Shundalau, PS Chybirai, AI Komyak, AP Zazhogin, MA Ksenofontov, DS Umreiko, J Appl Spect 2011, 78, 326.
| Crossref | GoogleScholarGoogle Scholar |
[34] BH Toby, RB Von Dreele, J Appl Cryst 2013, 46, 544.
| Crossref | GoogleScholarGoogle Scholar |