A sensitive WS2 nanosheet sensing platform based on chemiluminescence resonance energy transfer for the detection of ochratoxin A
Guoxin Qin A , Qifeng Zhou A , Huiling Li A , Feiyan Yan A , Jie He A * , Yuning Wei A , Haijun Wang A , Yongxian Chen A , Shuibing Lao A , Yuxia Yang A , Lihong Luo A and Renfu Mo AA Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
Australian Journal of Chemistry 75(5) 362-368 https://doi.org/10.1071/CH21285
Submitted: 9 November 2021 Accepted: 12 April 2022 Published: 13 May 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
In this article, we report a tungsten disulphide (WS2) nanosheet sensing platform based on chemiluminescence resonance energy transfer (CRET) for light on detection of ochratoxin A (OTA). The CRET system involves OTA aptamer-12-mer linker-DNAzyme, phosphate-DNA, lambda exonuclease (λexo), hemin, H2O2, luminol and a WS2 nanosheet. Based on the change in chemiluminescence intensity resulting from the OTA aptamer-12-mer linker-G-Quadruplexes/Hemin DNAzymes affinity for or desorption from the WS2 nanosheet surface in the presence and absence of OTA, an ultra-sensitive CRET-based sensor system is proposed, in which the OTA aptamer-12-mer linker-G-Quadruplexes/Hemin DNAzymes–H2O2–luminol and WS2 nanosheets act as CRET donors and acceptors, respectively. Various factors affecting the detection of OTA, including the incubation time of the OTA aptamer-12 mer linker-G-Quadruplexes/Hemin DNAzyme and WS2 nanosheet, the amount of λexo, concentrations of the WS2 nanosheet, luminol and H2O2, and pH value of the chemiluminescence reaction solution were investigated in detail. Under the optimal experimental conditions, the relative luminesecence intensity of the sensing system exhibited a good linear correlation with the OTA concentration in the range of 1.0–10.0 ng mL–1 with a LOD of 0.13 ng mL–1. The proposed CRET-based sensing system also exhibited excellent recoveries of 85.7–93.0% in rice samples and showed good application prospects for the analysis and detection of OTA, which is also easily extended to assay other biomolecules by simply changing the recognition sequence with the substrate aptamer.
Keywords: chemiluminescence resonance energy transfer, functional nucleic acid, G-Quadruplexes/Hemin DNAzyme, lambda exonuclease (λexo), light on detection, nanomaterial, ochratoxin A, sensor.
References
[1] JH Lou, XF Tang, HK Zhang, WJ Guan, C Lu, Angew Chem 2021, 133, 13139.| Crossref | GoogleScholarGoogle Scholar |
[2] LJ Zhang, MN Shi, WJ Zhou, WJ Guan, C Lu, Anal Chem 2021, 93, 7724.
| Crossref | GoogleScholarGoogle Scholar |
[3] JJ Dong, JY Liang, Y Jin, BX Lin, Anal Methods 2017, 9, 276.
| Crossref | GoogleScholarGoogle Scholar |
[4] XT Shen, W Xu, JB Guo, JO Yang, N Na, ACS sens 2020, 5, 2800.
| Crossref | GoogleScholarGoogle Scholar |
[5] SL Zhao, GX Qin, Y Huang, ST Li, X Lu, J Jiang, FG Ye, Anal Methods 2012, 4, 1927.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y Sun, XT Xu, YX Zhao, HN Tan, YH Li, JX Du, Talanta 2020, 209, 120582.
| Crossref | GoogleScholarGoogle Scholar | 31892019PubMed |
[7] MD Li, XY Huang, JC Ren, Anal Chem 2021, 93, 3042.
| Crossref | GoogleScholarGoogle Scholar |
[8] P Zhang, Y Ouyang, I Willner, Chem Sci 2021, 12, 4810.
| Crossref | GoogleScholarGoogle Scholar | 34163734PubMed |
[9] S Bi, SZ Yue, WL Song, SS Zhang, Chem Commun 2016, 52, 12841.
| Crossref | GoogleScholarGoogle Scholar |
[10] Q Wang, BC Yin, BC Ye, Biosens Bioelectron 2016, 80, 366.
| Crossref | GoogleScholarGoogle Scholar | 26866561PubMed |
[11] SX Xu, JL Li, XM Li, M Su, ZM Shi, Y Zeng, SJ Ni, Microchim Acta 2016, 183, 667.
| Crossref | GoogleScholarGoogle Scholar |
[12] GX Qin, SL Zhao, Y Huang, J Jiang, YM Liu, Biosens Bioelectron 2013, 46, 119.
| Crossref | GoogleScholarGoogle Scholar |
[13] XY You, YH Li, BP Li, J Ma, Talanta 2016, 147, 63.
| Crossref | GoogleScholarGoogle Scholar |
[14] BJ Jia, X He, PL Cui, JX Liu, JP Wang, Anal Chim Acta 2019, 1063, 136.
| Crossref | GoogleScholarGoogle Scholar | 30967177PubMed |
[15] MQ Shi, ZZ Jiang, BB Mei, YY Li, FF Sun, HS Yu, YH Xu, J Mater Chem A 2021, 9, 7059.
| Crossref | GoogleScholarGoogle Scholar |
[16] YJ Zhang, T Ideue, M Onga, F Qin, R Suzuki, A Zak, R Tenne, JH Smet, Y Iwasa, Nature 2019, 570, 349.
| Crossref | GoogleScholarGoogle Scholar | 31217597PubMed |
[17] WX Yin, X Liu, XY Zhang, XP Gao, L Vicki, Y Colvin, Zhang, WW Yu, Chem Mater 2020, 32, 4409.
| Crossref | GoogleScholarGoogle Scholar |
[18] ZY Ni, H Wen, SQ Zhang, R Guo, N Su, XW Liu, CM Liu, ChemCatChem 2020, 12, 4962.
| Crossref | GoogleScholarGoogle Scholar |
[19] T Sun, Y Su, M Sun, Y Lv, Microchem J 2021, 168, 106344.
| Crossref | GoogleScholarGoogle Scholar |
[20] LL Hao, HJ Gu, N Duan, SJ Wu, XY Ma, Y Xia, Z Tao, ZP Wang, Anal Chim Acta 2017, 959, 83.
| Crossref | GoogleScholarGoogle Scholar |
[21] MH Irani-nezhad, A Khataee, J Hassanzadeh, Y Orooji, Molecules 2019, 24, 689.
| Crossref | GoogleScholarGoogle Scholar |
[22] JJ Zhao, X Jin, M Vdovenko, LL Zhang, IY Sakharov, SL Zhao, Chem Commun 2015, 51, 11092.
| Crossref | GoogleScholarGoogle Scholar |
[23] F Bozheyev, R Nemkayeva, N Guseinov, M Kaikanov, A Tikhonov, J Lumin 2020, 217, 116786.
| Crossref | GoogleScholarGoogle Scholar |
[24] XH Duan, Q Liu, GN Wang, XG Su, J Lumin 2019, 207, 491.
| Crossref | GoogleScholarGoogle Scholar |
[25] SC Liu, HW Wu, JH Jiang, GL Shen, RQ Yu, Anal Methods 2013, 1, 164.
| Crossref | GoogleScholarGoogle Scholar |
[26] ZM Zhu, RQ Yu, X Chu, Anal Methods, 2014, 6, 6009.
| Crossref | GoogleScholarGoogle Scholar |
[27] TB Wu, YF Yang, W Chen, JY Wang, ZY Yang, SL Wang, XJ Xiao, MY Li, MP Zhao, Nucleic Acids Res 2018, 46, 3119.
| Crossref | GoogleScholarGoogle Scholar |
[28] JY Li, MY Zhang, HS Wang, J Wu, RX Zheng, JH Zhang, Y Li, ZY Wang, ZH Dai, Analyst 2020, 145, 5174.
| Crossref | GoogleScholarGoogle Scholar |
[29] JY Chen, TT Fan, Y Chen, LZ Ye, C Zhang, F Liu, Y Qin, Y Tan, YY Jiang, Biosens Bioelectron 2020, 169, 112631.
| Crossref | GoogleScholarGoogle Scholar |
[30] CZ Hu, KM Jiang, ZH Shao, MQ Shi, HM Meng, Analyst 2020, 145, 6948.
| Crossref | GoogleScholarGoogle Scholar |
[31] SN Fu, N Li, JJ Li, YN Deng, LD Xu, CY Yu, X Su, Nanoscale 2020, 12, 6964.
| Crossref | GoogleScholarGoogle Scholar |
[32] H Wu, J Wu, HY Wang, YL Liu, GQ Han, P Zou, J Hazard Mater 2020, 411, 124784.
| Crossref | GoogleScholarGoogle Scholar | 33450635PubMed |
[33] G Liang, Y Man, A Li, XX Jin, LG Pan, XH Liu, Microchim Acta 2018, 185, 54.
| Crossref | GoogleScholarGoogle Scholar |
[34] M Shi, SL Zhao, Y Huang, LM Zhao, YM Liu, Talanta 2014, 124, 14.
| Crossref | GoogleScholarGoogle Scholar | 24767440PubMed |
[35] R Zhang, J Wu, H Ao, JJ Fu, B Qiao, Q Wu, HX Ju, Anal Chem 2021, 93, 9933.
| Crossref | GoogleScholarGoogle Scholar | 34227801PubMed |
[36] NF Zhu, XS Li, Y Liu, JF Liu, YW Wang, XY Wu, Z Zhang, Sci Total Environ 2021, 784, 147215.
| Crossref | GoogleScholarGoogle Scholar |
[37] I Bazin, E Nabais, M Lopez-Ferber, Toxins 2010, 2, 2230.
| Crossref | GoogleScholarGoogle Scholar | 22069682PubMed |
[38] Commission Regulation (EU) No. 105/2010. Off J Eur Union 2010, 35, 7.
[39] TH Li, KS Jeon, YD Suh, Chem Commun 2011, 47, 9098.
| Crossref | GoogleScholarGoogle Scholar |
[40] TH Li, EJ Jo, MG Kim, Chem Commun 2012, 48, 2304.
| Crossref | GoogleScholarGoogle Scholar |
[41] E Jun Jo, H Mun, S Ji Kim, W Bo Shim, M Gon Kim, Food Chem 2016, 194, 1102.
| Crossref | GoogleScholarGoogle Scholar |
[42] Y Yuan, R Li, Z Liu, Anal Chem 2014, 86, 3610.
| Crossref | GoogleScholarGoogle Scholar | 24611524PubMed |
[43] Q Xi, DM Zhou, YY Kan, J Ge, ZK Wu, RQ Yu, JH Jiang, Anal Chem 2014, 86, 1361.
| Crossref | GoogleScholarGoogle Scholar | 24446758PubMed |
[44] D Kafouris, M Christofidou, M Christodoulou, E Christou, E Ioannou-Kakouri, Food Agric Immunol 2017, 28, 90.
| Crossref | GoogleScholarGoogle Scholar |