Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Properties tuning of supramolecular discotics by non-mesogenic triazines and acids

Chunming He https://orcid.org/0000-0001-5108-170X A , Kunlun Wang A * , Yue Wang A , Shengang Xu A , Yingliang Liu A * and Shaokui Cao A *
+ Author Affiliations
- Author Affiliations

A Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan Province, China.


Handling Editor: Charlotte Conn

Australian Journal of Chemistry 75(5) 369-380 https://doi.org/10.1071/CH21189
Submitted: 13 December 2021  Accepted: 6 May 2022   Published: 10 June 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

In this work, a new series of supramolecular discotic liquid crystals induced by hydrogen bonding between triazines Tx and aromatic acids Ay are presented, most of which exhibit columnar mesomorphic properties. The design strategy of combining the hydrogen bond parallel to the molecular plane with the π-stacking trend of triazine derivatives and aromatic acids was utilized, which has been widely confirmed by nematic, smectic or columnar liquid crystal phases. The formation of hydrogen bonded complexes was proven by FT-IR and 1H NMR spectroscopy and their stability studied by variable temperature FT-IR techniques. All prepared hydrogen bonded complexes displayed mesogenic properties and their liquid crystalline properties were investigated by means of DSC, POM and XRD. This work provides useful information to assist our further design of hydrogen bonded supramolecular liquid crystals for optoelectronic applications.

Keywords: aromatic acid, columnar phase, discotic liquid crystals, hydrogen bonding, nematic, self‐assembly, supramolecular chemistry, triazines.


References

[1]  T Kato, T Yasuda, Y Kamikawa, Y Masafumi,, Chem Commun 2009, 40, 729.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  W Pisula, M Zorn, JY Chang, K Müllen, R Zentel, Macromol Rapid Commun 2009, 30, 1179.
         | Crossref | GoogleScholarGoogle Scholar | 21638373PubMed |

[3]  T Wöhrle, I Wurzbach, J Kirres, A Kostidou, N Kapernaum, J Litterscheidt, JC Haenle, P Staffeld, A Baro, F Giesselmann, S Laschat, Chem Rev 2016, 116, 1139.
         | Crossref | GoogleScholarGoogle Scholar | 26483267PubMed |

[4]  M Kumar, S Kumar, Polym J 2017, 49, 85.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  B Feringán, P Romero, JL Serrano, CL Folcia, J Etxebarria, J Ortega, R Termine, A Golemme, R Giménez, T Sierra, J Am Chem Soc 2016, 138, 12511.
         | Crossref | GoogleScholarGoogle Scholar | 27577722PubMed |

[6]  R Termine, A Golemme, Int J Mol Sci 2021, 22, 877.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  KQ Zhao, C Chen, H Monobe, P Hu, BQ Wanga, Y Shimizu, Chem Commun 2011, 47, 6290.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  B Canımkurbey, MC Taşkan, S Demir, E Duygulu, D Atilla, F Yukse, New J Chem 2020, 44, 7424.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  A Gowda, L Jacob, DP Singh, R Douali, S Kumar, ChemistrySelect 2018, 3, 6551.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  N Tober, J Winter, M Jochem, M Lehmann, H Detert, Eur J Org Chem 2021, 5, 798.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A Khare, R Uttam, S Kumar, R Dhar, J Mol Liq 2020, 317, 113985.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  I Bala, N Singh, RAK Yadav, J De, SP Gupta, DP Singh, DK Dubey, J-H Jou, R Douali, SK Pal, J Mater Chem C 2020, 8, 12485.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M Vadivel, T Aravinda, K Swamynathan, BV Kumar, S Kumar, J Mol Liq 2021, 332, 115798.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  K-Q Zhao, X-Y Bai, B Xiao, Y Gao, P Hu, B-Q Wang, Q Zeng, C Wang, B Heinrichc, B Donnio, J Mater Chem C 2015, 3, 11735.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  JAM Lugger, RP Sijbesma, ChemistryOpen 2016, 5, 580.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  I Bala, SP Gupta, S Kumar, H Singh, J De, N Sharma, K Kailasam, SK Pal, Soft Matter 2018, 14, 6342.
         | Crossref | GoogleScholarGoogle Scholar | 30027180PubMed |

[17]  D Devadiga, TN Ahipa, Liq Cry Rev 2020, 8, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  YF Wu, CX Zhang, Y Zhang, BL Bai, HT Wang, M Li, Liq Cryst 2014, 41, 1854.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  D González-Rodríguez, APHJ Schenning, Chem Mater 2011, 23, 310.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J Barberá, L Puig, JL Serrano, T Sierra, Chem Mater 2004, 16, 3308.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  KE Maly, E Gagnon, T Maris, JD Wuest, Am Chem Soc 2007, 129, 4306.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  D Goldmann, D Janietz, C Schmidtb, JH Wendorffb, J Mater Chem 2004, 14, 1521.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  W Park, B Feringán, MY Yang, SH Ryu, H Ahn, TJ Shin, T Sierra, R Giménez, DK Yoon, ChemPhysChem 2019, 20, 890.
         | Crossref | GoogleScholarGoogle Scholar | 30730103PubMed |

[24]  LX Guo, YH Liu, L Wang, M Wang, BP Lin, H Yang, J Mater Chem C 2017, 5, 9165.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  A Concellón, APHJ Schenning, P Romero, M Marcos, JL Serrano, Macromolecules 2018, 51, 2349.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M Bucoş, T Sierra, A Golemme, R Termine, J Barberá, R Giménez, JL Serrano, P Romero, M Marcos, Chem Eur J 2014, 20, 10027.
         | Crossref | GoogleScholarGoogle Scholar | 24938877PubMed |

[27]  AA Vieira, H Gallardo, J Barberá, P Romero, JL Serranob, T Sierra, J Mater Chem 2011, 21, 5916.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  DH Wang, Macromolecules 2007, 40, 889.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  JF Xiong, SH Luo, JP Huo, JY Liu, SX Chen, ZY Wang, J Org Chem 2014, 79, 8366.
         | Crossref | GoogleScholarGoogle Scholar | 25122575PubMed |

[30]  JZ Li, T Tang, F Li, M Li, Dyes Pigm 2008, 77, 395.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  N Kimizuka, T Kawasaki, T Kunitake, J Am Chem Soc 1993, 115, 4387.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J Xu, GL Wu, ZQ Wang, X Zhang, Chem Sci 2012, 3, 3227.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  M List, H Puchinger, H Gabriel, U Monkowius, C Schwarzinger, J Org Chem 2016, 81, 4066.
         | Crossref | GoogleScholarGoogle Scholar | 27100712PubMed |

[34]  DR Vinayakumara, S Kumar, AV Adhikari, J Mol Liq 2019, 274, 215.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  S Castelar, J Barberá, M Marcos, P Romero, JL Serrano, A Golemme, R Termine, J Mater Chem C 2013, 1, 7321.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  L Álvarez, J Barberá, L Puig, P Romero, JL Serrano, T Sierra, J Mater Chem 2006, 16, 3768.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  T-Y Lai, C-Y Cheng, W-Y Cheng, K-M Lee, S-H Tung, Macromolecules 2015, 48, 717.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  J Barberá, L Puig, P Romero, JL Serrano, T Sierra, J Am Chem Soc 2006, 128, 4487.
         | Crossref | GoogleScholarGoogle Scholar | 16569027PubMed |

[39]  B Feringán, P Romero, JL Serrano, R Giménez, T Sierra, Chem Eur J 2015, 21, 8859.
         | Crossref | GoogleScholarGoogle Scholar | 25962742PubMed |

[40]  F Vera, JL Serrano, MP De Santo, R Barberi, MB Ros, T Sierra, J Mater Chem 2012, 22, 18025.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  AA Vieira, E Cavero, P Romero, H Gallardo, JL Serranob, T Sierra, J Mater Chem C 2014, 2, 7029.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  SA Pikin, SI Torgova, A Strigazzi, Mol Cryst LiqCryst 1982, 88, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  BT Thaker, NJ Chothani, YT Dhimmar, BS Patel, DB Solanki, NB Patel, JB Kanojiya, RS Tandel, Liq Cryst 2012, 39, 551.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  J-Z Li, H Xin, M Li, Liq Cryst 2006, 33, 913.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  L Li, M Salamonczyk, A Jákli, T Hegmann, Small 2016, 12, 3944.
         | Crossref | GoogleScholarGoogle Scholar | 27334846PubMed |

[46]  A Concellón, R Termine, A Golemme, P Romero, M Marcos, JL Serrano, J Mater Chem C 2019, 7, 2911.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  X-J Ma, Y-L Yang, K Deng, Q-D Zeng, C Wang, K-Q Zhao, P Hu, B-Q Wang, Chem Phys Chem 2007, 8, 2615.
         | Crossref | GoogleScholarGoogle Scholar | 18033707PubMed |

[48]  KC Majumdar, B Chattopadhyay, PK Shyam, N Pal, Tetrahedron Lett 2009, 50, 6901.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  JM Wolska, N Topnani, E Gorecka, J Mieczkowski, D Pociecha, ChemPhysChem 2016, 17, 2686.
         | Crossref | GoogleScholarGoogle Scholar | 27214573PubMed |

[50]  M Gupta, SK Pal, Langmuir 2016, 32, 1120.
         | Crossref | GoogleScholarGoogle Scholar | 26745267PubMed |