Determination of NADH by Surface Enhanced Raman Scattering Using Au@MB@Ag NPs
Yuqin Liao A , Ruiyun You A , Min Fan A , Shangyuan Feng B , Dechan Lu A B and Yudong Lu A CA College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
B Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.
C Corresponding author. Email: luyd@fjnu.edu.cn
Australian Journal of Chemistry 74(10) 722-729 https://doi.org/10.1071/CH21178
Submitted: 27 July 2021 Accepted: 16 September 2021 Published: 11 October 2021
Abstract
Nicotinamide adenine dinucleotide (NADH) is an important coenzyme involved in various metabolic processes of living cells. As an important biomarker, NADH is associated with breast cancer and Alzheimer’s disease. In this paper, silver plated gold core–shell nanoparticles containing Raman signal molecules were synthesised on the basis of bare gold. Using the Raman peak corresponding to the 4-mercaptobenzonitrile (MB) silent region C≡N vibration for quantification, while avoiding competition with the precious metal surface binding site to be measured, it can also be free from the interference of endogenous biomolecules. On the one hand, it can correct the working curve, on the other hand, it can avoid competing with the binding site. Compared with the core–shell structure prepared here, the limit of detection (LOD) for NADH was only 10−5 M for bare gold and the LOD for the core–shell structure prepared on the basis of bare gold was 3.3 × 10−7 M. In terms of correction, with Rhodamine 6G (R6G) as a Raman signalling molecule, the R2 value before SERS detection and correction is only 0.9405, and the R2 value after correction increases to 0.9853. The unique fingerprint peak of SERS was used to realise the quantitative detection of NADH, which realizes the detection of NADH in complex biological samples of serum and provides the possibility for expanding the early diagnosis of breast cancer.
Keywords: surface-enhanced Raman scattering (SERS), nicotinamide adenine dinucleotide (NADH), biologically Raman-silent region, core-shell, nanoparticles, internal standard, quantitative detection, Raman reporter.
References
[1] Y. Liu, B. Landick, S. Raman, ACS Chem. Biol. 2019, 8, 264.| Crossref | GoogleScholarGoogle Scholar |
[2] L. Yang, J. C. G. Canaveras, Z. Chen, L. Wang, L. Liang, C. Jang, J. A. Mayr, Z. Zhang, J. M. Ghergurovich, L. Zhan, Cell Metab. 2020, 31, 809.
| Crossref | GoogleScholarGoogle Scholar | 32187526PubMed |
[3] E. J. Mah, A. Lefebvre, G. E. Mcgahey, A. F. Yee, M. A. Digman, Sci. Rep. 2018, 8, 17094.
| Crossref | GoogleScholarGoogle Scholar | 30459440PubMed |
[4] A. S. Madsen, C. Andersen, M. Daoud, K. A. Anderson, J. S. Laursen, S. Chakladar, F. K. Huynh, A. R. Colaço, D. S. Backos, P. Fristrup, M. D. Hirschey, C. A. Olsen, J. Biol. Chem. 2016, 291, 7128.
| Crossref | GoogleScholarGoogle Scholar | 26861872PubMed |
[5] F. Li, Y. Tang, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 244, 118856.
| Crossref | GoogleScholarGoogle Scholar | 32882659PubMed |
[6] N. Ma, M. A. Digman, L. Malacrida, E. Gratton, Biomed. Opt. Express 2016, 7, 2441.
| Crossref | GoogleScholarGoogle Scholar | 27446681PubMed |
[7] L. Feng, H. P. Li, K. Galatsis, H. G. Monbouquette, J. Electroanal. Chem. 2016, 773, 7.
| Crossref | GoogleScholarGoogle Scholar |
[8] W. Ma, Y. L. Ying, L. X. Qin, G. Zhen, Z. Hao, D. W. Li, T. C. Sutherland, H. Y. Chen, Y. T. Long, Nat. Protoc. 2013, 8, 439.
| Crossref | GoogleScholarGoogle Scholar | 23391888PubMed |
[9] H. Chen, X. Liu, C. Yin, W. Li, X. Qin, C. Chen, Analyst 2019, 144, 5215.
| Crossref | GoogleScholarGoogle Scholar | 31359014PubMed |
[10] J. Song, L. Pu, J. Zhou, B. Duan, H. Duan, ACS Nano 2013, 7, 9947.
| Crossref | GoogleScholarGoogle Scholar | 24073739PubMed |
[11] J. Song, J. Zhou, H. Duan, J. Am. Chem. Soc. 2012, 134, 13458.
| Crossref | GoogleScholarGoogle Scholar | 22831389PubMed |
[12] M. Schechinger, H. Marks, S. Mabbott, M. Choudhury, G. Cote, Analyst 2019, 144, 4033.
| Crossref | GoogleScholarGoogle Scholar | 31143920PubMed |
[13] C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y. P. Zhao, L. H. Wang, Nanoscale 2016, 8, 17365.
| Crossref | GoogleScholarGoogle Scholar | 27714088PubMed |
[14] N. Choi, H. Dang, A. Das, M. Sim, J. Choo, Biosens. Bioelectron. 2020, 164, 112326.
| Crossref | GoogleScholarGoogle Scholar | 32553352PubMed |
[15] S. Sheng, Y. Ren, S. Yang, Q. Wang, Y. Liu, ACS Omega 2020, 5, 17703.
| Crossref | GoogleScholarGoogle Scholar | 32715257PubMed |
[16] S. Hanif, H. L. Liu, S. A. Ahmed, J. M. Yang, Y. Zhou, J. Pang, L. Ji, X. H. Xia, K. Wang, Anal. Chem. 2017, 89, 9911.
| Crossref | GoogleScholarGoogle Scholar | 28825473PubMed |
[17] Q. Q. Fang, Y. Y. Li, X. X. Miao, Y. Q. Zhang, J. Yan, T. R. Yu, J. Liu, Analyst 2019, 144, 3649.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. Langer, D. J. D. Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, L. M. Liz-Marzán, ACS Nano 2020, 14, 28.
| Crossref | GoogleScholarGoogle Scholar | 31478375PubMed |
[19] X. Y. Ma, Y. Xia, L. L. Ni, L. J. Song, Z. P. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 657.
| Crossref | GoogleScholarGoogle Scholar |
[20] T. Aguayo, C. Garrido, R. E. Clavijo, J. S. Gómez-Jeria, C. Araya Monasterio, M. Icaza, F. Espinoza Moraga, M. M. Campos Vallette, J. Raman Spectrosc. 2013, 44, 1238.
| Crossref | GoogleScholarGoogle Scholar |
[21] L. Guerrini, R. A. Alvarez-Puebla, Analyst 2019, 144, 6862.
| Crossref | GoogleScholarGoogle Scholar | 31701106PubMed |
[22] S. Caporali, F. Muniz-Miranda, A. Pedone, M. Muniz-Miranda, Sensors 2019, 19, 2700.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. Hussain, D. W. Sun, H. Pu, Food Chem. 2020, 317, 126429.
| Crossref | GoogleScholarGoogle Scholar | 32109658PubMed |
[24] X. Dai, Z. L. Song, W. Song, J. Zhang, X. Luo, Anal. Chem. 2020, 92, 11469.
| Crossref | GoogleScholarGoogle Scholar | 32662629PubMed |
[25] Y. Maruyama, M. Futamata, Chem. Phys. Lett. 2007, 448, 93.
| Crossref | GoogleScholarGoogle Scholar |
[26] Z. H. Zhou, L. Liu, G. Y. Wang, Z. Z. Xu, Chin. Phys. 2006, 15, 126.
| Crossref | GoogleScholarGoogle Scholar |
[27] A. C. S. Talari, Z. Movasaghi, S. Rehman, Iu. Rehman, Appl. Spectrosc. Rev. 2015, 50, 46.
| Crossref | GoogleScholarGoogle Scholar |
[28] G. J. Weng, X. J. Zhao, J. Zhao, J. J. Li, J. Zhu, J. W. Zhao, Sens. Actuators B Chem. 2019, 299, 126982.
| Crossref | GoogleScholarGoogle Scholar |
[29] P. Jain, B. Chakma, S. Patra, P. Goswami, Anal. Chim. Acta 2017, 956, 48.
| Crossref | GoogleScholarGoogle Scholar | 28093125PubMed |
[30] Z. Wang, S. Mao, H. Ogata, Talanta 2012, 99, 487.
| Crossref | GoogleScholarGoogle Scholar | 22967583PubMed |
[31] F. Valentini, A. Salis, A. Curulli, G. Palleschi, Anal. Chem. 2004, 76, 3244.
| Crossref | GoogleScholarGoogle Scholar | 15167808PubMed |