Assessing the Applicability of the Geometric Counterpoise Correction in B2PLYP/Double-ζ Calculations for Thermochemistry, Kinetics, and Noncovalent Interactions*
Nisha Mehta A and Lars Goerigk A BA School of Chemistry, The University of Melbourne, Parkville, Vic. 3010, Australia.
B Corresponding author. Email: lars.goerigk@unimelb.edu.au
Australian Journal of Chemistry 74(11) 795-805 https://doi.org/10.1071/CH21133
Submitted: 1 June 2021 Accepted: 24 June 2021 Published: 19 July 2021
Abstract
We present a proof-of-concept study of the suitability of Kruse and Grimme’s geometric counterpoise correction (gCP) for basis set superposition errors (BSSEs) in double-hybrid density functional calculations with a double-ζ basis set. The gCP approach only requires geometrical information as an input and no orbital/density information is needed. Therefore, this correction is practically free of any additional cost. gCP is trained against the Boys and Bernardi counterpoise correction across a set of 528 noncovalently bound dimers. We investigate the suitability of the approach for the B2PLYP/def2-SVP level of theory, and reveal error compensation effects—missing London dispersion and the BSSE—associated with B2PLYP/def2-SVP calculations, and present B2PLYP-gCP-D3(BJ)/def2-SVP with the reparametrised DFT-D3(BJ) and gCP corrections as a more balanced alternative. Benchmarking results on the S66x8 benchmark set for noncovalent interactions and the GMTKN55 database for main-group thermochemistry, kinetics, and noncovalent interactions show a statistical improvement of the B2PLYP-gCP-D3(BJ) scheme over plain B2PLYP and B2PLYP-D3(BJ). B2PLYP-D3(BJ) shows significant overestimation of interaction energies, barrier heights with larger deviations from the reference values, and wrong relative stabilities in conformers, all of which can be associated with BSSE. We find that the gCP-corrected method represents a significant improvement over B2PLYP-D3(BJ), particularly for intramolecular noncovalent interactions. These findings encourage future developments of efficient double-hybrid DFT strategies that can be applied when double-hybrid calculations with large basis sets are not feasible due to system size.
Keywords: density functional theory, double-hybrid density functionals, noncovalent interactions, thermochemistry, London dispersion, atomic-orbital basis sets, computational chemistry, theoretical chemistry.
References
[1] F. B. van Duijneveldt, J. G. van Duijneveldt van de Rijdt, J. H. van Lenthe, Chem. Rev. 1994, 94, 1873.| Crossref | GoogleScholarGoogle Scholar |
[2] B. Liu, A. McLean, J. Chem. Phys. 1973, 59, 4557.
| Crossref | GoogleScholarGoogle Scholar |
[3] N. R. Kestner, J. Chem. Phys. 1968, 48, 252.
| Crossref | GoogleScholarGoogle Scholar |
[4] H. Jansen, P. Ros, Chem. Phys. Lett. 1969, 3, 140.
| Crossref | GoogleScholarGoogle Scholar |
[5] D. W. Schwenke, D. G. Truhlar, J. Chem. Phys. 1985, 82, 2418.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. Collins, G. Gallup, Chem. Phys. Lett. 1986, 123, 56.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. J. Frisch, J. E. Del Bene, J. S. Binkley, H. F. Schaefer, J. Chem. Phys. 1986, 84, 2279.
| Crossref | GoogleScholarGoogle Scholar |
[8] D. Cook, J. Sordo, T. Sordo, Int. J. Quantum Chem. 1993, 48, 375.
| Crossref | GoogleScholarGoogle Scholar |
[9] L. Mentel, E. Baerends, J. Chem. Theory Comput. 2014, 10, 252.
| Crossref | GoogleScholarGoogle Scholar | 26579908PubMed |
[10] R. Kalescky, E. Kraka, D. Cremer, J. Chem. Phys. 2014, 140, 084315.
| Crossref | GoogleScholarGoogle Scholar | 24588177PubMed |
[11] E. Miliordos, S. S. Xantheas, J. Chem. Phys. 2015, 142, 094311.
| Crossref | GoogleScholarGoogle Scholar | 25747085PubMed |
[12] L. A. Burns, M. S. Marshall, C. D. Sherrill, J. Chem. Theory Comput. 2014, 10, 49.
| Crossref | GoogleScholarGoogle Scholar | 26579890PubMed |
[13] S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. Galano, J. R. Alvarez-Idaboy, J. Comput. Chem. 2006, 27, 1203.
| Crossref | GoogleScholarGoogle Scholar | 16752366PubMed |
[15] F. Jensen, J. Chem. Theory Comput. 2010, 6, 100.
| Crossref | GoogleScholarGoogle Scholar | 26614323PubMed |
[16] J. C. Faver, Z. Zheng, K. M. Merz, J. Chem. Phys. 2011, 135, 144110.
| Crossref | GoogleScholarGoogle Scholar | 22010701PubMed |
[17] J. C. Faver, Z. Zheng, K. M. Merz, Phys. Chem. Chem. Phys. 2012, 14, 7795.
| Crossref | GoogleScholarGoogle Scholar | 22377839PubMed |
[18] A. Otero-de-La-Roza, G. A. DiLabio, J. Chem. Theory Comput. 2017, 13, 3505.
| Crossref | GoogleScholarGoogle Scholar | 28636358PubMed |
[19] V. K. Prasad, A. Otero-de-la Roza, G. A. Di-Labio, J. Chem. Theory Comput. 2018, 14, 726.
| Crossref | GoogleScholarGoogle Scholar | 29262249PubMed |
[20] A. Otero-de-la-Roza, G. A. DiLabio, J. Chem. Theory Comput. 2020, 16, 4176.
| Crossref | GoogleScholarGoogle Scholar | 32470304PubMed |
[21] H. Kruse, S. Grimme, J. Chem. Phys. 2012, 136, 154101.
| Crossref | GoogleScholarGoogle Scholar | 22519309PubMed |
[22] R. Sure, S. Grimme, J. Comput. Chem. 2013, 34, 1672.
| Crossref | GoogleScholarGoogle Scholar | 23670872PubMed |
[23] J. G. Brandenburg, E. Caldeweyher, S. Grimme, Phys. Chem. Chem. Phys. 2016, 18, 15519.
| Crossref | GoogleScholarGoogle Scholar | 27240749PubMed |
[24] S. Grimme, J. G. Brandenburg, C. Bannwarth, A. Hansen, J. Chem. Phys. 2015, 143, 054107.
| Crossref | GoogleScholarGoogle Scholar | 26254642PubMed |
[25] J. G. Brandenburg, C. Bannwarth, A. Hansen, S. Grimme, J. Chem. Phys. 2018, 148, 064104.
| Crossref | GoogleScholarGoogle Scholar | 29448802PubMed |
[26] L. Doná, J. G. Brandenburg, B. Civalleri, J. Chem. Phys. 2019, 151, 121101.
| Crossref | GoogleScholarGoogle Scholar | 31575185PubMed |
[27] S. Grimme, A. Hansen, S. Ehlert, J.-M. Mewes, J. Chem. Phys. 2021, 154, 064103.
| Crossref | GoogleScholarGoogle Scholar | 33588555PubMed |
[28] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
| Crossref | GoogleScholarGoogle Scholar | 20423165PubMed |
[29] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
| Crossref | GoogleScholarGoogle Scholar | 21370243PubMed |
[30] E. Caldeweyher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2017, 147, 034112.
| Crossref | GoogleScholarGoogle Scholar | 28734285PubMed |
[31] E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2019, 150, 154122.
| Crossref | GoogleScholarGoogle Scholar | 31005066PubMed |
[32] J. Witte, J. B. Neaton, M. Head-Gordon, J. Chem. Phys. 2017, 146, 234105.
| Crossref | GoogleScholarGoogle Scholar | 28641421PubMed |
[33] S. Grimme, J. Chem. Phys. 2006, 124, 034108.
| Crossref | GoogleScholarGoogle Scholar | 16438568PubMed |
[34] L. Goerigk, S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 576.
| Crossref | GoogleScholarGoogle Scholar |
[35] L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, Phys. Chem. Chem. Phys. 2017, 19, 32184.
| Crossref | GoogleScholarGoogle Scholar | 29110012PubMed |
[36] L. Goerigk, N. Mehta, Aust. J. Chem. 2019, 72, 563.
| Crossref | GoogleScholarGoogle Scholar |
[37] G. Santra, N. Sylvetsky, J. M. Martin, J. Phys. Chem. A 2019, 123, 5129.
| Crossref | GoogleScholarGoogle Scholar | 31136709PubMed |
[38] N. Mehta, M. Casanova-Páez, L. Goerigk, Phys. Chem. Chem. Phys. 2018, 20, 23175.
| Crossref | GoogleScholarGoogle Scholar | 30062343PubMed |
[39] J. M. L. Martin, G. Santra, Isr. J. Chem. 2020, 60, 787.
| Crossref | GoogleScholarGoogle Scholar |
[40] N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 2018, 148, 241736.
| Crossref | GoogleScholarGoogle Scholar | 29960332PubMed |
[41] J. Rezác, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2011, 7, 2427.
| Crossref | GoogleScholarGoogle Scholar | 21836824PubMed |
[42] B. Brauer, M. K. Kesharwani, S. Kozuch, J. M. Martin, Phys. Chem. Chem. Phys. 2016, 18, 20905.
| Crossref | GoogleScholarGoogle Scholar | 26950084PubMed |
[43] A. Karton, J. M. Martin, J. Chem. Phys. 2011, 135, 144119.
| Crossref | GoogleScholarGoogle Scholar | 22010710PubMed |
[44] T. B. Adler, G. Knizia, H.-J. Werner, J. Chem. Phys. 2007, 127, 221106.
| Crossref | GoogleScholarGoogle Scholar | 18081383PubMed |
[45] H. Fliegl, W. Klopper, C. Hättig, J. Chem. Phys. 2005, 122, 084107.
| Crossref | GoogleScholarGoogle Scholar |
[46] G. Knizia, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2009, 130, 054104.
| Crossref | GoogleScholarGoogle Scholar | 19206955PubMed |
[47] D. P. Tew, W. Klopper, C. Neiss, C. Hättig, Phys. Chem. Chem. Phys. 2007, 9, 1921.
| Crossref | GoogleScholarGoogle Scholar | 17431520PubMed |
[48] H.-J. Werner, G. Knizia, F. R. Manby, Mol. Phys. 2011, 109, 407.
| Crossref | GoogleScholarGoogle Scholar |
[49] J. S. García, E. Brémond, M. Campetella, I. Ciofini, C. Adamo, J. Chem. Theory Comput. 2019, 15, 2944.
| Crossref | GoogleScholarGoogle Scholar |
[50] E. Brémond, I. Ciofini, J. C. Sancho-García, C. Adamo, J. Phys. Chem. A 2019, 123, 10040.
| Crossref | GoogleScholarGoogle Scholar | 31596087PubMed |
[51] B. Tirri, I. Ciofini, J. C. Sancho-García, C. Adamo, E. Brémond, Int. J. Quantum Chem. 2020, 120, e26233.
| Crossref | GoogleScholarGoogle Scholar |
[52] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
| Crossref | GoogleScholarGoogle Scholar | 16240044PubMed |
[53] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73.
| Crossref | GoogleScholarGoogle Scholar |
[54] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327.
| Crossref | GoogleScholarGoogle Scholar |
[55]
[56]
[57] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar |
[58] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B Condens. Matter 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 9944570PubMed |
[59] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200.
| Crossref | GoogleScholarGoogle Scholar |
[60] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
[61] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar |
[62] K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
| Crossref | GoogleScholarGoogle Scholar |
[63] F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 1998, 294, 143.
| Crossref | GoogleScholarGoogle Scholar |
[64] R. Izsák, F. Neese, J. Chem. Phys. 2011, 135, 144105.
| Crossref | GoogleScholarGoogle Scholar | 22010696PubMed |
[65] T. Schwabe, J. Phys. Chem. A 2013, 117, 2879.
| Crossref | GoogleScholarGoogle Scholar | 23473372PubMed |
[66] L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople, J. Chem. Phys. 1991, 94, 7221.
| Crossref | GoogleScholarGoogle Scholar |
[67] L. Goerigk, S. Grimme, J. Chem. Theory Comput. 2010, 6, 107.
| Crossref | GoogleScholarGoogle Scholar | 26614324PubMed |
[68] K. U. Lao, R. Schäffer, G. Jansen, J. M. Herbert, J. Chem. Theory Comput. 2015, 11, 2473.
| Crossref | GoogleScholarGoogle Scholar | 26575547PubMed |
[69] R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
| Crossref | GoogleScholarGoogle Scholar |
[70] V. S. Bryantsev, M. S. Diallo, A. C. T. van Duin, W. A. Goddard, J. Chem. Theory Comput. 2009, 5, 1016.
| Crossref | GoogleScholarGoogle Scholar | 26609610PubMed |
[71] A. Najibi, L. Goerigk, J. Chem. Theory Comput. 2018, 14, 5725.
| Crossref | GoogleScholarGoogle Scholar | 30299953PubMed |
[72] A. Najibi, L. Goerigk, J. Comput. Chem. 2020, 41, 2562.
| Crossref | GoogleScholarGoogle Scholar | 32870518PubMed |
[73] A. Najibi, M. Casanova-Páez, L. Goerigk, J. Phys. Chem. A 2021, 125, 4026.
| Crossref | GoogleScholarGoogle Scholar | 33938224PubMed |
[74] S. Kozuch, J. M. L. Martin, J. Chem. Theory Comput. 2013, 9, 1918.
| Crossref | GoogleScholarGoogle Scholar | 26583543PubMed |
[75] J. Rezac, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2012, 8, 4285.
| Crossref | GoogleScholarGoogle Scholar | 26605592PubMed |
[76] S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev. 2016, 116, 5105.
| Crossref | GoogleScholarGoogle Scholar | 27077966PubMed |
[77]
[78] L. Goerigk, S. Grimme, J. Chem. Theory Comput. 2011, 7, 291.
| Crossref | GoogleScholarGoogle Scholar | 26596152PubMed |
[79] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
| Crossref | GoogleScholarGoogle Scholar |
[80] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar |
[81] L. Grafova, M. Pitonak, J. Rezac, P. Hobza, J. Chem. Theory Comput. 2010, 6, 2365.
| Crossref | GoogleScholarGoogle Scholar | 26613492PubMed |
[82] D. E. Taylor, J. G. Angyan, G. Galli, C. Zhang, F. Gygi, K. Hirao, J. W. Song, K. Rahul, O. A. von Lilienfeld, R. Podeszwa, et al. J. Chem. Phys. 2016, 145, 124105.
| Crossref | GoogleScholarGoogle Scholar | 27782652PubMed |
[83] A. Karton, S. Daon, J. M. L. Martin, B. Ruscic, Chem. Phys. Lett. 2011, 510, 165.
| Crossref | GoogleScholarGoogle Scholar |
[84] S. Parthiban, J. M. L. Martin, J. Chem. Phys. 2001, 114, 6014.
| Crossref | GoogleScholarGoogle Scholar |
[85] Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2006, 110, 10478.
| Crossref | GoogleScholarGoogle Scholar | 16942053PubMed |
[86] H. Yu, D. G. Truhlar, J. Chem. Theory Comput. 2015, 11, 2968.
| Crossref | GoogleScholarGoogle Scholar | 26575734PubMed |
[87] Y. Zhao, H. T. Ng, R. Peverati, D. G. Truhlar, J. Chem. Theory Comput. 2012, 8, 2824.
| Crossref | GoogleScholarGoogle Scholar | 26592123PubMed |
[88] E. R. Johnson, P. Mori-Sanchez, A. J. Cohen, W. Yang, J. Chem. Phys. 2008, 129, 204112.
| Crossref | GoogleScholarGoogle Scholar | 19045857PubMed |
[89] S. Grimme, H. Kruse, L. Goerigk, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 1402.
| Crossref | GoogleScholarGoogle Scholar |
[90] Y. Zhao, B. J. Lynch, D. G. Truhlar, Phys. Chem. Chem. Phys. 2005, 7, 43.
| Crossref | GoogleScholarGoogle Scholar |
[91] Y. Zhao, N. Gonzalez-Garcia, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 2012.
| Crossref | GoogleScholarGoogle Scholar | 16833536PubMed |
[92] J. Friedrich, J. Hänchen, J. Chem. Theory Comput. 2013, 9, 5381.
| Crossref | GoogleScholarGoogle Scholar | 26592276PubMed |
[93] J. Friedrich, J. Chem. Theory Comput. 2015, 11, 3596.
| Crossref | GoogleScholarGoogle Scholar | 26574443PubMed |
[94] S. Grimme, C. Mück-Lichtenfeld, E.-U. Würthwein, A. W. Ehlers, T. P. M. Goumans, K. Lammertsma, J. Phys. Chem. A 2006, 110, 2583.
| Crossref | GoogleScholarGoogle Scholar | 16494365PubMed |
[95] M. Piacenza, S. Grimme, J. Comput. Chem. 2004, 25, 83.
| Crossref | GoogleScholarGoogle Scholar | 14634996PubMed |
[96] H. L. Woodcock, H. F. Schaefer, P. R. Schreiner, J. Phys. Chem. A 2002, 106, 11923.
| Crossref | GoogleScholarGoogle Scholar |
[97] P. R. Schreiner, A. A. Fokin, R. A. Pascal, A. de Meijere, Org. Lett. 2006, 8, 3635.
| Crossref | GoogleScholarGoogle Scholar | 16898779PubMed |
[98] C. Lepetit, H. Chermette, M. Gicquel, J.-L. Heully, R. Chauvin, J. Phys. Chem. A 2007, 111, 136.
| Crossref | GoogleScholarGoogle Scholar | 17201396PubMed |
[99] J. S. Lee, J. Phys. Chem. A 2005, 109, 11927.
| Crossref | GoogleScholarGoogle Scholar | 16366644PubMed |
[100] A. Karton, J. M. Martin, Mol. Phys. 2012, 110, 2477.
| Crossref | GoogleScholarGoogle Scholar |
[101] Y. Zhao, O. Tishchenko, J. R. Gour, W. Li, J. J. Lutz, P. Piecuch, D. Truhlar, J. Phys. Chem. A 2009, 113, 5786.
| Crossref | GoogleScholarGoogle Scholar | 19374412PubMed |
[102] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar |
[103] D. Manna, J. M. L. Martin, J. Phys. Chem. A 2016, 120, 153.
| Crossref | GoogleScholarGoogle Scholar | 26654916PubMed |
[104] F. Neese, T. Schwabe, S. Kossmann, B. Schirmer, S. Grimme, J. Chem. Theory Comput. 2009, 5, 3060.
| Crossref | GoogleScholarGoogle Scholar | 26609985PubMed |
[105] S. N. Steinmann, G. Csonka, C. Carminboeuf, J. Chem. Theory Comput. 2009, 5, 2950.
| Crossref | GoogleScholarGoogle Scholar | 26609976PubMed |
[106] H. Krieg, S. Grimme, Mol. Phys. 2010, 108, 2655.
| Crossref | GoogleScholarGoogle Scholar |
[107] L.-J. Yu, A. Karton, Chem. Phys. 2014, 441, 166.
| Crossref | GoogleScholarGoogle Scholar |
[108] S. Grimme, M. Steinmetz, M. Korth, J. Org. Chem. 2007, 72, 2118.
| Crossref | GoogleScholarGoogle Scholar | 17286442PubMed |
[109] R. Huenerbein, B. Schirmer, J. Moellmann, S. Grimme, Phys. Chem. Chem. Phys. 2010, 12, 6940.
| Crossref | GoogleScholarGoogle Scholar | 20461239PubMed |
[110] R. Sure, A. Hansen, P. Schwerdtfeger, S. Grimme, Phys. Chem. Chem. Phys. 2017, 19, 14296.
| Crossref | GoogleScholarGoogle Scholar | 28537281PubMed |
[111] V. Guner, K. S. Khuong, A. G. Leach, P. S. Lee, M. D. Bartberger, K. N. Houk, J. Phys. Chem. A 2003, 107, 11445.
| Crossref | GoogleScholarGoogle Scholar |
[112] D. H. Ess, K. Houk, J. Phys. Chem. A 2005, 109, 9542.
| Crossref | GoogleScholarGoogle Scholar | 16866406PubMed |
[113] T. C. Dinadayalane, R. Vijaya, A. Smitha, G. N. Sastry, J. Phys. Chem. A 2002, 106, 1627.
| Crossref | GoogleScholarGoogle Scholar |
[114] A. Karton, L. Goerigk, J. Comput. Chem. 2015, 36, 622.
| Crossref | GoogleScholarGoogle Scholar | 25649643PubMed |
[115] L. Goerigk, R. Sharma, Can. J. Chem. 2016, 94, 1133.
| Crossref | GoogleScholarGoogle Scholar |
[116] A. Karton, R. J. O’Reilly, B. Chan, L. Radom, J. Chem. Theory Comput. 2012, 8, 3128.
| Crossref | GoogleScholarGoogle Scholar | 26605724PubMed |
[117] A. Karton, R. J. O’Reilly, L. Radom, J. Phys. Chem. A 2012, 116, 4211.
| Crossref | GoogleScholarGoogle Scholar | 22497287PubMed |
[118] P. Jurecka, J. Sponer, J. Cerny, P. Hobza, Phys. Chem. Chem. Phys. 2006, 8, 1985.
| Crossref | GoogleScholarGoogle Scholar | 16633685PubMed |
[119] M. S. Marshall, L. A. Burns, C. D. Sherrill, J. Chem. Phys. 2011, 135, 194102.
| Crossref | GoogleScholarGoogle Scholar | 22112061PubMed |
[120] J. Rezac, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2011, 7, 2427.
| Crossref | GoogleScholarGoogle Scholar | 21836824PubMed |
[121] D. Manna, M. K. Kesharwani, N. Sylvetsky, J. M. L. Martin, J. Chem. Theory Comput. 2017, 13, 3136.
| Crossref | GoogleScholarGoogle Scholar | 28530805PubMed |
[122] D. Setiawan, E. Kraka, D. Cremer, J. Phys. Chem. A 2015, 119, 1642.
| Crossref | GoogleScholarGoogle Scholar | 25325889PubMed |
[123] T. Schwabe, S. Grimme, Phys. Chem. Chem. Phys. 2007, 9, 3397.
| Crossref | GoogleScholarGoogle Scholar | 17664963PubMed |
[124] S. Grimme, Angew. Chem. Int. Ed. 2006, 45, 4460.
| Crossref | GoogleScholarGoogle Scholar |
[125] D. Gruzman, A. Karton, J. M. L. Martin, J. Phys. Chem. A 2009, 113, 11974.
| Crossref | GoogleScholarGoogle Scholar | 19795892PubMed |
[126] M. K. Kesharwani, A. Karton, J. M. L. Martin, J. Chem. Theory Comput. 2016, 12, 444.
| Crossref | GoogleScholarGoogle Scholar | 26653705PubMed |
[127] D. Reha, H. Valdes, J. Vondrasek, P. Hobza, A. Abu-Riziq, B. Crews, M. S. de Vries, Chemistry 2005, 11, 6803.
| Crossref | GoogleScholarGoogle Scholar | 16092140PubMed |
[128] L. Goerigk, A. Karton, J. M. L. Martin, L. Radom, Phys. Chem. Chem. Phys. 2013, 15, 7028.
| Crossref | GoogleScholarGoogle Scholar | 23403537PubMed |
[129] U. R. Fogueri, S. Kozuch, A. Karton, J. M. L. Martin, J. Phys. Chem. A 2013, 117, 2269.
| Crossref | GoogleScholarGoogle Scholar | 23379303PubMed |
[130] G. I. Csonka, A. D. French, G. P. Johnson, C. A. Stortz, J. Chem. Theory Comput. 2009, 5, 679.
| Crossref | GoogleScholarGoogle Scholar | 26609572PubMed |
[131] H. Kruse, A. Mladek, K. Gkionis, A. Hansen, S. Grimme, J. Sponer, J. Chem. Theory Comput. 2015, 11, 4972.
| Crossref | GoogleScholarGoogle Scholar | 26574283PubMed |
[132] S. Kozuch, S. M. Bachrach, J. M. Martin, J. Phys. Chem. A 2014, 118, 293.
| Crossref | GoogleScholarGoogle Scholar | 24328111PubMed |
[133] L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.
| Crossref | GoogleScholarGoogle Scholar | 21384027PubMed |
[134] J.-D. Chai, S.-P. Mao, Chem. Phys. Lett. 2012, 538, 121.
| Crossref | GoogleScholarGoogle Scholar |
[135] E. Brémond, C. Adamo, J. Chem. Phys. 2011, 135, 024106.
| Crossref | GoogleScholarGoogle Scholar | 21766924PubMed |
[136] S. Grimme, J. Chem. Phys. 2003, 118, 9095.
| Crossref | GoogleScholarGoogle Scholar |
[137] S. Grimme, R. Huenerbein, S. Ehrlich, ChemPhysChem 2011, 12, 1258.
| Crossref | GoogleScholarGoogle Scholar | 21445954PubMed |
[138] S. Grimme, P. R. Schreiner, Angew. Chem. Int. Ed. 2011, 50, 12639.
| Crossref | GoogleScholarGoogle Scholar |
[139] S. Grimme, M. Steinmetz, Phys. Chem. Chem. Phys. 2013, 15, 16031.
| Crossref | GoogleScholarGoogle Scholar | 23963317PubMed |
[140] W. Hujo, S. Grimme, J. Chem. Theory Comput. 2013, 9, 308.
| Crossref | GoogleScholarGoogle Scholar | 26589033PubMed |
[141] S. Rösel, H. Quanz, C. Logemann, J. Becker, E. Mossou, L. Canadillas-Delgado, E. Caldeweyher, S. Grimme, P. R. Schreiner, J. Am. Chem. Soc. 2017, 139, 7428.
| Crossref | GoogleScholarGoogle Scholar | 28502175PubMed |
[142] A. A. Fokin, T. S. Zhuk, S. Blomeyer, C. Perez, L. V. Chernish, A. E. Pashenko, J. Antony, Y. V. Vishnevskiy, R. J. F. Berger, S. Grimme, et al. J. Am. Chem. Soc. 2017, 139, 16696.
| Crossref | GoogleScholarGoogle Scholar | 29037036PubMed |
[143] L. Goerigk, J. R. Reimers, J. Chem. Theory Comput. 2013, 9, 3240.
| Crossref | GoogleScholarGoogle Scholar | 26583999PubMed |
[144] L. Goerigk, C. A. Collyer, J. R. Reimers, J. Phys. Chem. B 2014, 118, 14612.
| Crossref | GoogleScholarGoogle Scholar | 25410613PubMed |
[145] P. Kraus, I. Frank, J. Phys. Chem. A 2018, 122, 4894.
| Crossref | GoogleScholarGoogle Scholar | 29750513PubMed |
[146] N. Mehta, T. Fellowes, J. M. White, L. Goerigk, J. Chem. Theory Comput. 2021, 17, 2783.
| Crossref | GoogleScholarGoogle Scholar | 33881869PubMed |
[147] L. Goerigk, H. Kruse, S. Grimme, ChemPhysChem 2011, 12, 3421.
| Crossref | GoogleScholarGoogle Scholar | 22113958PubMed |
[148] M. K. Kesharwani, A. Karton, N. Sylvetsky, J. M. Martin, Aust. J. Chem. 2018, 71, 238.
| Crossref | GoogleScholarGoogle Scholar |
[149] L. A. Curtiss, K. Raghavachari, P. C. Redfern, J. A. Pople, J. Chem. Phys. 1997, 106, 1063.
| Crossref | GoogleScholarGoogle Scholar |
[150] H. Kruse, L. Goerigk, S. Grimme, J. Org. Chem. 2012, 77, 10824.
| Crossref | GoogleScholarGoogle Scholar | 23153035PubMed |
[151] W. J. Hehre, R. Ditchfeld, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
| Crossref | GoogleScholarGoogle Scholar |