Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

An Investigation of Five Component [3+2] Self-Assembled Cage Formation Using Amidinium···Carboxylate Hydrogen Bonds*,

Chriso M. Thomas A B , Émer M. Foyle A B , Samuel E. Walker A and Nicholas G. White https://orcid.org/0000-0003-2975-0887 A C
+ Author Affiliations
- Author Affiliations

A Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

B These authors contributed equally to this work.

C Corresponding author. Email: nicholas.white@anu.edu.au

Australian Journal of Chemistry 74(11) 787-794 https://doi.org/10.1071/CH21101
Submitted: 30 April 2021  Accepted: 14 June 2021   Published: 5 July 2021

Abstract

The assembly of hydrogen bonded cages using amidinium···carboxylate hydrogen bonding interactions was investigated. A new tris-amidinium hydrogen bond donor tecton based on a tetraphenylmethane scaffold was prepared and its self-assembly with the terephthalate anion studied, and a new tricarboxylate hydrogen bond acceptor tecton was synthesised and its assembly with the 1,3-benzenebis(amidinium) hydrogen bond donor explored. In both cases, molecular modelling indicated that the formation of the cages was geometrically feasible and 1H NMR spectroscopic evidence was consistent with interactions between the components in competitive d6-DMSO solvent mixtures. DOSY NMR spectroscopy of both systems indicated that both components diffuse at the same rate as each other, and diffusion coefficients were consistent with cage formation, and with the formation of assemblies significantly larger than the individual components. An X-ray crystal structure showed that one of the assemblies did not have the desired cage structure in the solid state.

Keywords: supramolecular chemistry, cages, self–assembly, hydrogen bonding, amidinium, carboxylate, DOSY NMR, X-ray crystallography, computational modelling.


References

[1]  M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  T. Hasell, A. I. Cooper, Nat. Rev. Mater. 2016, 1, 16053.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  A. Galan, P. Ballester, Chem. Soc. Rev. 2016, 45, 1720.
         | Crossref | GoogleScholarGoogle Scholar | 26797259PubMed |

[4]  V. Mouarrawis, R. Plessius, J. I. van der Vlugt, J. N. H. Reek, Front Chem. 2018, 6, 623.
         | Crossref | GoogleScholarGoogle Scholar | 30622940PubMed |

[5]  Y. Xue, X. Hang, J. Ding, B. Li, R. Zhu, H. Pang, Q. Xu, Coord. Chem. Rev. 2021, 430, 213656.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  L. R. MacGillivray, J. L. Atwood, Nature 1997, 389, 469.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  T. Heinz, D. M. Rudkevich, J. Rebek, Nature 1998, 394, 764.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Y. Liu, C. Hu, A. Comotti, M. D. Ward, Science 2011, 333, 436.
         | Crossref | GoogleScholarGoogle Scholar | 21778396PubMed |

[9]  L. Adriaenssens, P. Ballester, Chem. Soc. Rev. 2013, 42, 3261.
         | Crossref | GoogleScholarGoogle Scholar | 23321897PubMed |

[10]  O. Dumele, N. Trapp, F. Diederich, Angew. Chem. Int. Ed. 2015, 54, 12339.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  L. Turunen, U. Warzok, R. Puttreddy, N. K. Beyeh, C. A. Schalley, K. Rissanen, Angew. Chem. Int. Ed. 2016, 55, 14033.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  L.-J. Riwar, N. Trapp, K. Root, R. Zenobi, F. Diederich, Angew. Chem. Int. Ed. 2018, 57, 17259.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y.-J. Zhu, Y. Gao, M.-M. Tang, J. Rebek, Y. Yu, Chem. Commun. 2021, 57, 1543.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  F. Corbellini, R. Fiammengo, P. Timmerman, M. Crego-Calama, K. Versluis, A. J. R. Heck, I. Luyten, D. N. Reinhoudt, J. Am. Chem. Soc. 2002, 124, 6569.
         | Crossref | GoogleScholarGoogle Scholar | 12047176PubMed |

[15]  F. Corbellini, L. Di Costanzo, M. Crego-Calama, S. Geremia, D. N. Reinhoudt, J. Am. Chem. Soc. 2003, 125, 9946.
         | Crossref | GoogleScholarGoogle Scholar | 12914457PubMed |

[16]  B. Kuberski, A. Szumna, Chem. Commun. 2009, 1959.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. Katagiri, Y. Tanaka, Y. Furusho, E. Yashima, Angew. Chem. Int. Ed. 2007, 46, 2435.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. Kohlhaas, M. Zähres, C. Mayer, M. Engeser, C. Merten, J. Niemeyer, Chem. Commun. 2019, 55, 3298.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Y. Tanaka, H. Katagiri, Y. Furusho, E. Yashima, Angew. Chem. Int. Ed. 2005, 44, 3867.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Ikeda, Y. Tanaka, T. Hasegawa, Y. Furusho, E. Yashima, J. Am. Chem. Soc. 2006, 128, 6806.
         | Crossref | GoogleScholarGoogle Scholar | 16719458PubMed |

[21]  Y. Nakatani, Y. Furusho, E. Yashima, Angew. Chem. Int. Ed. 2010, 49, 5463.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. W. Hosseini, R. Ruppert, P. Schaeffer, A. De Cian, N. Kyritsakas, J. Fischer, J. Chem. Soc. Chem. Commun. 1994, 2135.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  T. Kusukawa, K. Matsumoto, H. Nakamura, W. Iizuka, K. Toyama, S. Takeshita, Org. Biomol. Chem. 2013, 11, 3692.
         | Crossref | GoogleScholarGoogle Scholar | 23625021PubMed |

[24]  N. G. White, Dalton Trans. 2019, 48, 7062.
         | Crossref | GoogleScholarGoogle Scholar | 30667427PubMed |

[25]  J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem. Int. Ed. Engl. 1995, 34, 1555.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  N. Kamali, M. Aljohani, P. McArdle, A. Erxleben, Cryst. Growth Des. 2015, 15, 3905.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  L. Pop, N. D. Hadade, A. van der Lee, M. Barboiu, I. Grosu, Y.-M. Legrand, Cryst. Growth Des. 2016, 16, 3271.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  M. Thomas, T. Anglim Lagones, M. Judd, M. Morshedi, M. L. O’Mara, N. G. White, Chem. Asian J. 2017, 12, 1587.
         | Crossref | GoogleScholarGoogle Scholar | 28544634PubMed |

[29]  M. Morshedi, M. Thomas, A. Tarzia, C. J. Doonan, N. G. White, Chem. Sci. 2017, 8, 3019.
         | Crossref | GoogleScholarGoogle Scholar | 28451369PubMed |

[30]  S. A. Boer, M. Morshedi, A. Tarzia, C. J. Doonan, N. G. White, Chem. – Eur. J. 2019, 25, 10006.
         | Crossref | GoogleScholarGoogle Scholar | 31267583PubMed |

[31]  J. Nicks, S. A. Boer, N. G. White, J. A. Foster, Chem. Sci. 2021, 12, 3322.
         | Crossref | GoogleScholarGoogle Scholar | 34164102PubMed |

[32]  For a review of the supramolecular chemistry of these species in an anion recognition context, see: S. M. Butler, K. A. Jolliffe, Org. Biomol. Chem. 2020, 18, 8236.
         | Crossref | GoogleScholarGoogle Scholar | 33001119PubMed |

[33]  As noted by a referee, carboxylates are relatively basic in DMSO (e.g. pKa of benzoic acid = 11.1 in DMSO; F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456–463) and it is conceivable that some proton transfer from the amidinium to carboxylate groups could be envisaged. While in this study, the N–H peaks broadened upon addition of a carboxylate such that they could not be well resolved, other authors (e.g. refs [19] and [23]) have shown convincingly that the amidinium···carboxylate form dominates in similar systems, and indeed that mixing benzamidines and benzoic acids in DMSO results in proton transfer to give the amidinium···carboxylate form.

[34]  J. J. P. Stewart, J. Mol. Model. 2007, 13, 1173.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  A. Avellaneda, P. Valente, A. Burgun, J. D. Evans, A. W. Markwell-Heys, D. Rankine, D. J. Nielsen, M. R. Hill, C. J. Sumby, C. J. Doonan, Angew. Chem. Int. Ed. 2013, 52, 3746.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  É. M. Foyle, N. G. White, CrystEngComm 2020, 22, 2526.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  S. Kotha, K. Mandal, K. K. Arora, V. R. Pedireddi, Adv. Synth. Catal. 2005, 347, 1215.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  We note that there are considerable difficulties with determining solvodynamic radii for non-spherical species. As well as using the Stokes–Einstein equation, we have calculated the diffusion values for the supramolecular assemblies and for 13+ or 73– alone, relative to TBA+ or BPh4 as internal references. In each case, the increase in size calculated using this method is the same within 10 % as the value calculated using the Stokes–Einstein equation (see Supplementary Material for more details).

[39]  A. L. Spek, Acta Crystallogr. 2015, C71, 9.

[40]  X. Wang, F. Hof, Beilstein J. Org. Chem. 2012, 8, 1.
         | Crossref | GoogleScholarGoogle Scholar | 22423267PubMed |

[41]  R. Krämer, J.-M. Lehn, A. Marquis-Rigault, Proc. Natl. Acad. Sci. USA 1993, 90, 5394.
         | Crossref | GoogleScholarGoogle Scholar | 11607405PubMed |

[42]  Niemeyer and coworkers (ref. [18]) suggested that the failure to obtain mass spectrometric evidence for related self–assembled cages may be due to either the dissociation of the assemblies at the very low concentrations used for mass spectrometry, or to protonation/deprotonation of the neutral capsules during the ESI process destabilising the hydrogen bonds and resulting in fragmentation. We suggest similar processes are at play in our system.

[43]  A. J. Lowe, F. M. Pfeffer, Chem. Commun. 2008, 1871.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512.
         | Crossref | GoogleScholarGoogle Scholar | 11671879PubMed |

[45]  D. Aragao, J. Aishima, H. Cherukuvada, R. Clarken, M. Clift, N. P. Cowieson, D. J. Ericsson, C. L. Gee, S. Macedo, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Rostan, R. Williamson, T. T. Caradoc-Davies, J. Synchrotron Radiat. 2018, 25, 885.
         | Crossref | GoogleScholarGoogle Scholar | 29714201PubMed |

[46]  W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  L. Palatinus, G. Chapuis, J. Appl. Cryst. 2007, 40, 786.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Cryst. 2003, 36, 1487.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  Spartan 18 2018 (Wavefunction Inc.: Irvine, CA).