Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Experimental Validation of Quantum Circuit Rules in Molecular Junctions*

Elena Gorenskaia A , Masnun Naher A , Lakshya Daukiya A B , Stephen A. Moggach A , David Costa Milan C , Andrea Vezzoli C , Colin J. Lambert D , Richard J. Nichols C , Thomas Becker E and Paul J. Low https://orcid.org/0000-0003-1136-2296 A F
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B Present address: Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342037, India.

C Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.

D Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.

E School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

F Corresponding author. Email: paul.low@uwa.edu.au

Australian Journal of Chemistry 74(11) 806-818 https://doi.org/10.1071/CH21136
Submitted: 5 June 2021  Accepted: 22 July 2021   Published: 1 September 2021

Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND

Abstract

A series of diarylacetylene (tolane) derivatives functionalised at the 4- and 4′-positions by thiolate, thioether, or amine groups capable of serving as anchor groups to secure the molecules within a molecular junction have been prepared and characterised. The series of compounds have a general form X-B-X, Y-B-Y, and X-B-Y where X and Y represent anchor groups and B the molecular bridge. The single-molecule conductance values determined by the scanning tunnelling microscope break-junction method are found to be in excellent agreement with the predictions made on the basis of a recently proposed ‘molecular circuit law’, which states ‘the conductance CH21136_IE1.gif of an asymmetric molecule X-B-Y is the geometric mean CH21136_IE2.gif of the conductance of the two symmetric molecules derived from it, CH21136_IE3.gif and CH21136_IE4.gif.’ The experimental verification of the circuit law, which holds for systems in which the constituent moieties X, B, and Y are weakly coupled and whose conductance takes place via off-resonance tunnelling, gives further confidence in the use of this relationship in the design of future compounds for use in molecular electronics research.

Keywords: molecular electronics, quantum interference, alkynes.


References

[1]  S. Marques-Gonzalez, P. J. Low, Aust. J. Chem. 2016, 69, 244.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  K. Wang, B. Q. Xu, Top. Curr. Chem. 2017, 375, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  D. Xiang, X. L. Wang, C. C. Jia, T. Lee, X. F. Guo, Chem. Rev. 2016, 116, 4318.
         | Crossref | GoogleScholarGoogle Scholar | 26979510PubMed |

[4]  R. L. McCreery, A. J. Bergren, Adv. Mater. 2009, 21, 4303.
         | Crossref | GoogleScholarGoogle Scholar | 26042937PubMed |

[5]  F. Chen, J. Hihath, Z. F. Huang, X. L. Li, N. J. Tao, Annu. Rev. Phys. Chem. 2007, 58, 535.
         | Crossref | GoogleScholarGoogle Scholar | 17134372PubMed |

[6]  J. P. Launay, Coord. Chem. Rev. 2013, 257, 1544.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  B. Mann, H. Kuhn, J. Appl. Phys. 1971, 42, 4398.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  E. Gorenskaia, K. L. Turner, S. Martin, P. Cea, P. J. Low, Nanoscale 2021, 13, 9055.
         | Crossref | GoogleScholarGoogle Scholar | 34042128PubMed |

[9]  L. Herrer, S. Martin, P. Cea, Appl. Sci. 2020, 10, 6064.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. Vilan, D. Aswal, D. Cahen, Chem. Rev. 2017, 117, 4248.
         | Crossref | GoogleScholarGoogle Scholar | 28177226PubMed |

[11]  B. Branchi, F. C. Simeone, M. A. Rampi, Top. Curr. Chem. 2011, 313, 85.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  B. Q. Xu, N. J. J. Tao, Science 2003, 301, 1221.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  W. Haiss, H. van Zalinge, S. J. Higgins, D. Bethell, H. Hobenreich, D. J. Schiffrin, R. J. Nichols, J. Am. Chem. Soc. 2003, 125, 15294.
         | Crossref | GoogleScholarGoogle Scholar | 14664565PubMed |

[14]  L. Wang, L. Wang, L. Zhang, D. Xiang, Top. Curr. Chem. 2017, 375, 61.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  P. T. Mathew, F. Z. Fang, Engineering 2018, 4, 760.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  H. L. Chen, J. F. Stoddart, Nat. Rev. Mater. 2021,
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. M. Osorio, S. Catarelli, P. Cea, J. B. G. Gluyas, F. Hartl, S. J. Higgins, E. Leary, P. J. Low, S. Martin, R. J. Nichols, J. Tory, J. Ulstrup, A. Vezzoli, D. C. Milan, Q. Zeng, J. Am. Chem. Soc. 2015, 137, 14319.
         | Crossref | GoogleScholarGoogle Scholar | 26488257PubMed |

[18]  S. Ciampi, N. Darwish, H. M. Aitken, I. Diez-Perez, M. L. Coote, Chem. Soc. Rev. 2018, 47, 5146.
         | Crossref | GoogleScholarGoogle Scholar | 29947390PubMed |

[19]  R. J. Nichols, S. J. Higgins, Acc. Chem. Res. 2016, 49, 2640.
         | Crossref | GoogleScholarGoogle Scholar | 27714992PubMed |

[20]  K. Jiang, S. J. Pookpanratana, T. Ren, S. N. Natoli, B. A. Sperling, J. Robertson, C. A. Richter, S. Yu, Q. L. Li, Appl. Phys. Lett. 2019, 115, 162102.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. Pookpanratana, H. Zhu, E. G. Bittle, S. N. Natoli, T. Ren, C. A. Richter, Q. Li, C. A. Hacker, J. Phys. Condens. Matter 2016, 28, 094009.
         | Crossref | GoogleScholarGoogle Scholar | 26871549PubMed |

[22]  V. Parkula, M. S. Maglione, S. Casalini, Q. M. Zhang, P. Greco, C. A. Bortolotti, C. Rovira, M. Mas-Torrent, F. Biscarini, Adv. Electron. Mater. 2019, 5, 1800875.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  S. K. Saxena, U. M. Tefashe, M. Supur, R. L. McCreery, ACS Sens. 2021, 6, 513.
         | Crossref | GoogleScholarGoogle Scholar | 33315386PubMed |

[24]  C. P. Tao, C. C. Jiang, Y. H. Wang, J. F. Zheng, Y. Shao, X. S. Zhou, J. Phys. Chem. Lett. 2020, 11, 10023.
         | Crossref | GoogleScholarGoogle Scholar | 33179941PubMed |

[25]  E. Burzuri, A. Garcia-Fuente, V. Garcia-Suarez, K. S. Kumar, M. Ruben, J. Ferrer, H. S. J. van der Zant, Nanoscale 2018, 10, 7905.
         | Crossref | GoogleScholarGoogle Scholar | 29682641PubMed |

[26]  M. Ormaza, P. Abufager, B. Verlhac, N. Bachellier, M. L. Bocquet, N. Lorente, L. Limot, Nat. Commun. 2017, 8, 1974.
         | Crossref | GoogleScholarGoogle Scholar | 29215014PubMed |

[27]  S. Wagner, F. Kisslinger, S. Ballmann, F. Schramm, R. Chandrasekar, T. Bodenstein, O. Fuhr, D. Secker, K. Fink, M. Ruben, H. B. Weber, Nat. Nanotechnol. 2013, 8, 575.
         | Crossref | GoogleScholarGoogle Scholar | 23851359PubMed |

[28]  C. Herrmann, G. C. Solomon, M. A. Ratner, J. Am. Chem. Soc. 2010, 132, 3682.
         | Crossref | GoogleScholarGoogle Scholar | 20192192PubMed |

[29]  R. Liu, S. H. Ke, W. Yang, H. U. Baranger, J. Chem. Phys. 2007, 127, 141104.
         | Crossref | GoogleScholarGoogle Scholar | 17994823PubMed |

[30]  R. Liu, S. H. Ke, H. U. Baranger, W. T. Yang, Nano Lett. 2005, 5, 1959.
         | Crossref | GoogleScholarGoogle Scholar | 16218717PubMed |

[31]  K. Wang, E. Meyhofer, P. Reddy, Adv. Funct. Mater. 2020, 30, 1904534.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  X. T. Zhao, C. C. Huang, M. Gulcur, A. S. Batsanov, M. Baghernejad, W. J. Hong, M. R. Bryce, T. Wandlowski, Chem. Mater. 2013, 25, 4340.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Q. Lu, C. Yao, X. H. Wang, F. S. Wang, J. Phys. Chem. C 2012, 116, 17853.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  J. R. Quinn, F. W. Foss, L. Venkataraman, R. Breslow, J. Am. Chem. Soc. 2007, 129, 12376.
         | Crossref | GoogleScholarGoogle Scholar | 17887757PubMed |

[35]  M. Naher, D. C. Milan, O. A. Al-Owaedi, I. J. Planje, S. Bock, J. Hurtado-Gallego, P. Bastante, Z. M. Abd Dawood, L. Rincon-Garcia, G. Rubio-Bollinger, S. J. Higgins, N. Agrait, C. J. Lambert, R. J. Nichols, P. J. Low, J. Am. Chem. Soc. 2021, 143, 3817.
         | Crossref | GoogleScholarGoogle Scholar | 33606524PubMed |

[36]  J. Ferrer, C. J. Lambert, V. M. Garcia-Suarez, D. Z. Manrique, D. Visontai, L. Oroszlany, R. Rodriguez-Ferradas, I. Grace, S. W. D. Bailey, K. Gillemot, H. Sadeghi, L. A. Algharagholy, New J. Phys. 2014, 16, 093029.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  C. J. Lambert, S. X. Liu, Chem. – Eur. J. 2018, 24, 4193.
         | Crossref | GoogleScholarGoogle Scholar | 29120523PubMed |

[38]  D. Z. Manrique, Q. Al-Galiby, W. J. Hong, C. J. Lambert, Nano Lett. 2016, 16, 1308.
         | Crossref | GoogleScholarGoogle Scholar | 26784577PubMed |

[39]  W. J. Hong, D. Z. Manrique, P. Moreno-Garcia, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  P. Moreno-Garcia, M. Gulcur, D. Z. Manrique, T. Pope, W. J. Hong, V. Kaliginedi, C. C. Huang, A. S. Batsanov, M. R. Bryce, C. Lambert, T. Wandlowski, J. Am. Chem. Soc. 2013, 135, 12228.
         | Crossref | GoogleScholarGoogle Scholar | 23875671PubMed |

[41]  M. R. Bryce, J. Mater. Chem. C Mater. Opt. Electron. Devices 2021,
         | Crossref | GoogleScholarGoogle Scholar |

[42]  D. Nishimura, T. Oshikiri, Y. Takashima, A. Hashidzume, H. Yamaguchi, A. Harada, J. Org. Chem. 2008, 73, 2496.
         | Crossref | GoogleScholarGoogle Scholar | 18336039PubMed |

[43]  M. Naher, S. Bock, Z. M. Langtry, K. M. O’Malley, A. N. Sobolev, B. W. Skelton, M. Korb, P. J. Low, Organometallics 2020, 39, 4667.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  M. S. Hybertsen, L. Venkataraman, Acc. Chem. Res. 2016, 49, 452.
         | Crossref | GoogleScholarGoogle Scholar | 26938931PubMed |

[45]  C. J. Lambert, Chem. Soc. Rev. 2015, 44, 875.
         | Crossref | GoogleScholarGoogle Scholar | 25255961PubMed |

[46]  C. J. Lambert, Quantum Transport in Nanostructures and Molecules: An Introduction to Molecular Electronics 2021 (IOP Publishing: Bristol, UK). 10.1088/978-0-7503-3639-0

[47]  A. K. Flatt, Y. X. Yao, F. Maya, J. M. Tour, J. Org. Chem. 2004, 69, 1752.
         | Crossref | GoogleScholarGoogle Scholar | 14987042PubMed |

[48]  N. Miyaura, A. Suzuki, Org. Synth. 1990, 68, 130.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  S. S. Zalesskiy, V. P. Ananikov, A. J. Reay, I. J. S. Fairlamb, Inorg. Synth. 2018, 37, 183.

[50]  G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  A. Thorn, G. M. Sheldrick, Acta Crystallogr. A 2008, 64, C221.
         | Crossref | GoogleScholarGoogle Scholar |