Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effect of Single/Mixed Surfactant Systems on Orientations of Liquid Crystals and Interaction of Proteins with Surfactants at Fluid Interfaces

Xiangrong Huang A , Zhicheng Ye A , Yazhuo Shang https://orcid.org/0000-0002-1555-3260 A D , Yifan He B D , Hong Meng B , Yinmao Dong B , Zhaohui Qu C , Youting Liu C , Shouhong Xu A and Honglai Liu A
+ Author Affiliations
- Author Affiliations

A Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

B Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China.

C Nutri-Woods Bio-Tech (Beijing) Co., Ltd, Beijing 102488, China.

D Corresponding authors. Email: shangyazhuo@ecust.edu.cn; heyifan@btbu.edu.cn

Australian Journal of Chemistry 74(8) 591-600 https://doi.org/10.1071/CH21063
Submitted: 8 March 2021  Accepted: 16 May 2021   Published: 7 June 2021

Abstract

A series of single surfactant systems, i.e, quaternary ammonium-based gemini surfactants with different spacers and alkyl chain lengths (m-n-m; m = 12, n = 2, 3, 4, 6; n = 3, m = 12, 14, 16), halogen-free surface-active ionic liquid (HF-SAILs) with different symmetries ([Cnmim][C12H25SO4]; n = 6, 8, 10, 12), and single-chain cationic surfactants including 1-dodecyl-3-methylimidazolium bromide ([C12mim]Br) and dodecyltrimethylammonium bromide (DTAB), along with certain combinations of different surfactants (12-3-12/[C12mim]Br and 12-3-12/DTAB) were applied to an aqueous/liquid crystal interface (ALI). All the surfactants could induce an orientational transition of liquid crystals (LCs) from a planar to homeotropic state, which caused a bright-to-dark optical shift. It was proved that double-chain surfactants and the mixed surfactants inclined to adsorb at the ALI triggering the orientational transition. Inspiringly, a quicker and more sensitive dark-to-bright optical response was observed for mixed surfactant system-decorated interfaces in contact with proteins (such as bovine serum albumin (BSA), lysozyme, and trypsin) as opposed to the single surfactant systems. The ALI decorated by the 12-3-12/[C12mim]Br system was particularly efficient and exhibited the most sensitive optical response for BSA (0.01 ng mL−1). The order parameters (SCD) of surfactants tails at the interface and the free energy of proteins with 12-3-12 and [C12mim]Br were calculated, respectively. The results explain that the 12-3-12/[C12mim]Br-laden ALI shows a quicker and more sensitive optical response for BSA. This work inspired us to study mixed surfactant systems-decorated LC interfaces and further provides new insights for different chemical and biological applications.

Keywords: gemini surfactant, mixed surfactants, liquid crystals, proteins, order parameter, optical reorientation, interface, free energy.


References

[1]  J. S. Park, S. Teren, W. H. Tepp, D. J. Beebe, E. A. Johnson, N. L. Abbott, Chem. Mater. 2006, 18, 6147.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  D. Hartono, X. Bi, K. L. Yang, L. Y. L. Yung, Adv. Funct. Mater. 2008, 18, 2938.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Z. Hussain, C. Zafiu, S. Kupcu, L. Pivetta, N. Hollfelder, A. Masutani, P. Kilickiran, E. K. Sinner, Biosens. Bioelectron. 2014, 56, 210.
         | Crossref | GoogleScholarGoogle Scholar | 24508543PubMed |

[4]  Q. Hu, C. H. Jang, Analyst 2012, 137, 567.
         | Crossref | GoogleScholarGoogle Scholar | 22108758PubMed |

[5]  Q. Hu, C. H. Jang, J. Biotechnol. 2012, 157, 223.
         | Crossref | GoogleScholarGoogle Scholar | 22138010PubMed |

[6]  Y. Wang, Q. Hu, Y. Guo, L. Yu, Biosens. Bioelectron. 2015, 72, 25.
         | Crossref | GoogleScholarGoogle Scholar | 25957073PubMed |

[7]  Y. Wang, L. Zhou, Q. Kang, L. Yu, Talanta 2018, 183, 223.
         | Crossref | GoogleScholarGoogle Scholar | 29567168PubMed |

[8]  Y. Wang, Q. Hu, T. Tian, Y. Gao, L. Yu, Anal. Chim. Acta 2016, 937, 119.
         | Crossref | GoogleScholarGoogle Scholar | 27590553PubMed |

[9]  L. Qi, Q. Hu, Q. Kang, Y. Bi, Y. Jiang, L. Yu, Anal. Chem. 2019, 91, 11653.
         | Crossref | GoogleScholarGoogle Scholar | 31430128PubMed |

[10]  L. Qi, S. Liu, Y. Jiang, J. Lin, L. Yu, Q. Hu, Anal. Chem. 2020, 92, 3867.
         | Crossref | GoogleScholarGoogle Scholar | 32069024PubMed |

[11]  J. M. Brake, N. L. Abbott, Langmuir 2002, 18, 6101.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J. M. Brake, A. D. Mezera, N. L. Abbott, Langmuir 2003, 19, 6436.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  N. A. Lockwood, J. J. De Pablo, N. L. Abbott, Langmuir 2005, 21, 6805.
         | Crossref | GoogleScholarGoogle Scholar | 16008390PubMed |

[14]  J. M. Brake, N. L. Abbott, Langmuir 2007, 23, 8497.
         | Crossref | GoogleScholarGoogle Scholar | 17595119PubMed |

[15]  T. Tian, Q. Kang, T. Wang, J. Xiao, L. Yu, J. Colloid Interface Sci. 2018, 518, 111.
         | Crossref | GoogleScholarGoogle Scholar | 29448227PubMed |

[16]  L. Chen, Y. Shang, H. Liu, J. Colloid Interface Sci. 2006, 301, 644.
         | Crossref | GoogleScholarGoogle Scholar | 16820164PubMed |

[17]  R. Zana, Adv. Colloid Interface Sci. 2002, 97, 205.
         | Crossref | GoogleScholarGoogle Scholar | 12027021PubMed |

[18]  N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123.
         | Crossref | GoogleScholarGoogle Scholar | 18197338PubMed |

[19]  Z. G. Asadov, G. A. Akhmedova, A. D. Agazade, S. M. Nasibova, I. A. Zarbalieva, A. M. Bagirova, R. A. Rahimov, Russ. J. Gen. Chem. 2012, 82, 1916.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J. Jiao, B. Dong, H. Zhang, Y. Zhao, X. Wang, R. Wang, L. Yu, J. Phys. Chem. B 2012, 116, 958.
         | Crossref | GoogleScholarGoogle Scholar | 22204280PubMed |

[21]  J. Xia, S. Yin, H. Li, H. Xu, Y. Yan, Q. Zhang, Langmuir 2011, 27, 1200.
         | Crossref | GoogleScholarGoogle Scholar | 21190341PubMed |

[22]  I. Goodchild, L. Collier, S. L. Millar, I. Prokeš, J. C. D. Lord, C. P. Butts, J. Bowers, J. R. P. Webster, R. K. Heenan, J. Colloid Interface Sci. 2007, 307, 455.
         | Crossref | GoogleScholarGoogle Scholar | 17222419PubMed |

[23]  L. Yue, Z. He, Y. Wang, Y. Shang, H. Liu, Acta Phys. - Chim. Sin. 2014, 30, 2291.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  T. Yin, M. Qin, W. Shen, Colloids Surf. A 2014, 461, 22.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  N. Gull, P. Sen, R. H. Khan, Kabir-ud-Din, Langmuir 2009, 25, 11686.
         | Crossref | GoogleScholarGoogle Scholar | 19788221PubMed |

[26]  Y. Li, X. Wang, Y. Wang, J. Phys. Chem. B 2006, 110, 8499.
         | Crossref | GoogleScholarGoogle Scholar | 16623537PubMed |

[27]  T. Zhou, M. Ao, G. Xu, T. Liu, J. Zhang, J. Colloid Interface Sci. 2013, 389, 175.
         | Crossref | GoogleScholarGoogle Scholar | 23044272PubMed |

[28]  R. Patel, J. K. Maurya, M. U. Mir, M. Kumari, N. Maurya, J. Lumin. 2014, 154, 298.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  D. E. Otzen, Biochim. Biophys. Acta 2011, 1814, 562.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. M. Obliosca, S. D. Arco, M. H. Huang, J. Fluoresc. 2007, 17, 613.
         | Crossref | GoogleScholarGoogle Scholar | 17710518PubMed |

[31]  S. Zhong, C. H. Jang, Biosens. Bioelectron. 2014, 59, 293.
         | Crossref | GoogleScholarGoogle Scholar | 24747204PubMed |

[32]  P. Wang, J. Yu, Y. Zhao, Z. Li, G. Li, Sens. Actuators B Chem. 2011, 160, 929.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  M. Zhang, C. H. Jang, Anal. Biochem. 2014, 455, 13.
         | Crossref | GoogleScholarGoogle Scholar | 24708935PubMed |

[34]  X. Bi, D. Hartono, K. Yang, Adv. Funct. Mater. 2009, 19, 3760.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  Y. Fan, Y. Han, Y. Wang, Acta Phys. - Chim. Sin. 2016, 32, 214.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  T. Tian, Q. Hu, Y. Wang, Y. Gao, L. Yu, Langmuir 2016, 32, 11745.
         | Crossref | GoogleScholarGoogle Scholar | 27783527PubMed |

[37]  M. Omer, M. T. Islam, M. Khan, Y. K. Kim, J. H. Lee, I. K. Kang, S. Y. Park, Macromol. Res. 2014, 22, 888.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  Q. Hu, C. H. Jang, ACS Appl. Mater. Interfaces 2012, 4, 1791.
         | Crossref | GoogleScholarGoogle Scholar | 22394113PubMed |

[39]  J. M. Seo, W. Khan, S. Y. Park, Soft Matter 2012, 8, 198.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  H. Liu, Y. Liu, Y. Shang, H. Liu, Mol. Simul. 2019, 45, 223.
         | Crossref | GoogleScholarGoogle Scholar |