Preparation and Structures of Rare Earth 3-Benzoylpropanoates and 3-Phenylpropanoates*
Nicholas C. Thomas A , Owen A. Beaumont B , Glen B. Deacon B E , Cornelius Gaertner B , Craig M. Forsyth B , Anthony E. Somers C and Peter C. Junk D EA College of Sciences, Chemistry Department, Auburn University at Montgomery, Montgomery, AL 36117, USA.
B School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
C Institute for Frontier Materials, Deakin University, Burwood, Vic. 3125, Australia.
D College of Science, Technology and Engineering, James Cook University, Townsville, Qld 4811, Australia.
E Corresponding authors. Email: glen.deacon@monash.edu; peter.junk@jcu.edu.au
Australian Journal of Chemistry 73(12) 1250-1259 https://doi.org/10.1071/CH20197
Submitted: 16 June 2020 Accepted: 7 August 2020 Published: 8 September 2020
Abstract
Rare earth (RE) complexes of 3-benzoylpropanoate (bp), [RE(bp)3(H2O)n] (RE = La, n = 2; RE = Y, Ce, Pr, Nd, Yb, n = 1) and 3-phenylpropanoate (pp), [RE(pp)3] (RE = Y, La, Ce, Nd, Yb), have been prepared by metathesis reactions between the corresponding rare earth chloride and the appropriate sodium carboxylate. Analysis by single-crystal X-ray diffraction finds that both RE bp and pp complexes favour formation of carboxylate-bridged 1-D coordination polymers in the solid state. Here, the former favours heteroleptic 9 or 10-coordinate complexes (splitting between Ce and La) with the carbonyl remaining uncoordinated but participating as a hydrogen bond acceptor with water in the coordination sphere. Lack of bp carbonyl coordination leaves this group available for surface interactions during corrosion inhibition and complex solubilization. The latter pp derivatives form eight-coordinate complexes for Y and Yb and are the first examples of homoleptic RE pp complexes to be reported.
References
[1] A. Ouchi, Y. Suzuki, Y. Ohki, Y. Koizumi, Coord. Chem. Rev. 1988, 92, 29.| Crossref | GoogleScholarGoogle Scholar |
[2] G. Meyer, J. Alloys Compd. 2000, 300–301, 113.
| Crossref | GoogleScholarGoogle Scholar |
[3] See Ch. 6, pp. 191–237 in: S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers: Design, Analysis and Application 2008 (Royal Society of Chemistry: Cambridge).
[4] R. Wang, Z. Zheng, in Rare Earth Coordination Chemistry: Fundamentals and Applications (Ed. C. Huang) 2010, Ch. 3, pp. 91–136 (John Wiley and Sons: Singapore).
[5] T. Behrsing, G. B. Deacon, P. C. Junk, in Rare Earth-Based Corrosion Inhibitors (Eds M. Forsyth, B. R. W. Hinton) 2014, Ch. 1, pp. 1–37 (Elsevier/Woodhead Publishing: Amsterdam).
[6] J.-s. Lu, R. Wang, in Encyclopedia of Inorganic and Bioinorganic Chemistry (Ed. T. P. Hanusa) 2012, pp. 1–11 (John Wiley and Sons: Hoboken, NJ).
[7] J.-C. G. Bünzli, C. Piguet, Chem. Soc. Rev. 2005, 34, 1048.
| Crossref | GoogleScholarGoogle Scholar |
[8] S. V. Eliseeva, J.-C. G. Bünzli, Chem. Soc. Rev. 2010, 39, 189.
| Crossref | GoogleScholarGoogle Scholar | 20023849PubMed |
[9] J.-C. G. Bünzli, Trends Chem. 2019, 1, 751.
| Crossref | GoogleScholarGoogle Scholar |
[10] A. Fischbach, R. Anwander, in Neodymium-Based Ziegler Catalysts – Fundamental Chemistry (Ed. O. Nuyken) 2006, Vol. 204, Ch. 2, pp. 155–281 (Springer-Verlag: Berlin).
[11] G. B. Deacon, M. Forsyth, P. C. Junk, W. W. Lee, Chem. Aust 2008, 75, 18.
[12] M. Forsyth, M. Seter, B. Hinton, G. Deacon, P. Junk, Aust. J. Chem. 2011, 64, 812.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. E. Somers, G. B. Deacon, B. R. W. Hinton, D. R. Macfarlane, P. C. Junk, M. Y. J. Tan, M. Forsyth, J. Indian Inst. Sci. 2016, 96, 285.
[14] A. E. Somers, Y. Peng, A. L. Chong, M. Forsyth, D. R. MacFarlane, G. B. Deacon, A. E. Hughes, B. R. W. Hinton, J. I. Mardel, P. C. Junk, Corros. Eng. Sci. Technol. 2020, 55, 311.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. Costa, C. B. Klein, Crit. Rev. Toxicol. 2006, 36, 155.
| Crossref | GoogleScholarGoogle Scholar | 16736941PubMed |
[16] A. V. Zabula, S. Dey, J. R. Robinson, T. Cheisson, R. F. Higgins, G. Bhargava, R. C. Nahas, D. Cinoman, M. Kerins, E. C. Houze, E. J. Schelter, Corros. Sci. 2020, 165, 108377.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. E. Somers, B. R. W. Hinton, C. N. de Bruin-Dickason, G. B. Deacon, P. C. Junk, M. Forsyth, Corros. Sci. 2018, 139, 430.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Peng, A. E. Hughes, G. B. Deacon, P. C. Junk, B. R. W. Hinton, M. Forsyth, J. I. Mardel, A. E. Somers, Corros. Sci. 2018, 145, 199.
| Crossref | GoogleScholarGoogle Scholar |
[19] M. Seter, G. M. A. Girard, W. W. Lee, G. Deacon, P. Junk, B. Hinton, M. Forsyth, AIMS Mater. Sci. 2015, 2, 1.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Peng, A. E. Hughes, J. I. Mardel, G. B. Deacon, P. C. Junk, M. Forsyth, B. R. W. Hinton, A. E. Somers, ACS Appl. Mater. Interfaces 2019, 11, 36154.
| Crossref | GoogleScholarGoogle Scholar | 31532991PubMed |
[21] G. B. Deacon, P. C. Junk, W. W. Lee, M. Forsyth, J. Wang, New J. Chem. 2015, 39, 7688.
| Crossref | GoogleScholarGoogle Scholar |
[22] C. N. de Bruin-Dickason, G. B. Deacon, C. M. Forsyth, S. Hanf, O. B. Heilmann, B. R. W. Hinton, P. C. Junk, A. E. Somers, Y. Q. Tan, D. R. Turner, Aust. J. Chem. 2017, 70, 478.
| Crossref | GoogleScholarGoogle Scholar |
[23] M. Frey, S. G. Harris, J. M. Holmes, D. A. Nation, S. Parsons, P. A. Tasker, R. E. P. Winpenny, Chem. – Eur. J. 2000, 6, 1407.
| Crossref | GoogleScholarGoogle Scholar | 10840964PubMed |
[24] L. F. Marques, A. A. B. Cantaruti, C. C. Correa, M. G. Lahoud, R. R. da Silva, S. J. L. Ribeiro, F. C. Machado, J. Photochem. Photobiol. Chem. 2013, 252, 69.
| Crossref | GoogleScholarGoogle Scholar |
[25] Z. Xiang, T. Wang, J. Wang, Y. Wu, Y.-C. Sun, B. Xie, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2016, 46, 1632.
| Crossref | GoogleScholarGoogle Scholar |
[26] L. F. Marques, A. Cuin, G. S. G. de Carvalho, M. V. dos Santos, S. J. L. Ribeiro, F. C. Machado, Inorg. Chim. Acta 2016, 441, 67.
| Crossref | GoogleScholarGoogle Scholar |
[27] L. Lu, J. Wang, A. Q. Ma, W. P. Wu, B. Xie, Y. Wu, A. Kumar, Russ. J. Coord. Chem. 2015, 41, 673.
| Crossref | GoogleScholarGoogle Scholar |
[28] F. Chen, J. Wang, M.-W. Dong, S.-L. Zhang, C.-P. Wu, J.-Q. Liu, J. Mol. Struct. 2019, 1177, 117.
| Crossref | GoogleScholarGoogle Scholar |
[29] L. F. Marques, C. C. Correa, H. C. Garcia, T. Martins Francisco, S. J. L. Ribeiro, J. D. L. Dutra, R. O. Freire, F. C. Machado, J. Lumin. 2014, 148, 307.
| Crossref | GoogleScholarGoogle Scholar |
[30] Q. Jing, L. Lu, F.-L. Wang, W.-G. Luo A, J. Wang, Inorg. Nano-Met. Chem 2017, 47, 1369.
| Crossref | GoogleScholarGoogle Scholar |
[31] X. F. Yu, L. Lu, Y. R. Zhong, W. G. Luo A, J. Wang, Russ. J. Coord. Chem. 2017, 43, 244.
| Crossref | GoogleScholarGoogle Scholar |
[32] CrysAlisPro, v1.171.39.46 2018 (Rigaku Oxford Diffraction: Yarnton, UK).
[33] W. Kabsch, Acta Crystallogr. Sect. D 2010, 66, 125.
| Crossref | GoogleScholarGoogle Scholar |
[34] G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[35] N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Williamson, T. Caradoc-Davies, J. Synchrotron Radiat. 2015, 22, 187.
| Crossref | GoogleScholarGoogle Scholar | 25537608PubMed |