Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Photochemically Induced Solid State Dimerisation of Resveratrol Analogues: A Greener Synthetic Process*

Basil Danylec A , Eva M. Campi A , Craig M. Forsyth https://orcid.org/0000-0002-3433-6130 A , Reinhard I. Boysen https://orcid.org/0000-0002-7063-6958 A and Milton T. W. Hearn https://orcid.org/0000-0003-2744-6531 A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Corresponding author. Email: milton.hearn@monash.edu

Australian Journal of Chemistry 73(12) 1260-1270 https://doi.org/10.1071/CH20176
Submitted: 31 May 2020  Accepted: 25 August 2020   Published: 16 September 2020

Abstract

The photochemical dimerisation of resveratrol analogues in the solid state to generate chiral phenyl substituted cyclobutanes is described. NMR spectroscopic and X-ray crystallographic methods have confirmed that the dimerisation leads to the head to tail orientation of the phenyl group substituents in the cyclobutane derivative. Interestingly, the parent compound, resveratrol, in the solid state, did not form a cyclobutane dimer, but the O-acetyl analogues gave the corresponding cyclobutane dimers in high yield, suggesting that the close packing of molecules together with the electron density through the conjugated double bond of the resveratrol structure are important determinants for photodimerisation to occur in the solid state.


References

[1]  K. Xiao, H.-J. Zhang, L.-J. Xuan, J. Zhang, Y.-M. Xu, D.-L. Bai, in Studies in Natural Products Chemistry, Vol. 34: Bioactive Natural Products (Part N) (Ed. Atta-ur-Rahman) 2008, pp. 453–646 (Elsevier Science Ltd: Oxford, UK).

[2]  (a) S. A. Snyder, A. M. ElSohly, F. Kontes, Nat. Prod. Rep. 2011, 28, 897.
         | Crossref | GoogleScholarGoogle Scholar | 21412558PubMed |
      (b) S. A. Snyder, A. Gollner, M. I. Chirlac, Nature 2011, 474, 461.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) S. A. Snyder, in Recent Advances in Polyphenol Research, Vol. 3 (Eds V. Cheynier, P. Sarni-Manchado, S. Quideau) 2012, pp. 311–351 (John Wiley & Sons Ltd: Hoboken, NJ).

[3]  C. Li, J. Lu, X. Xu, R. Hu, Y. Pan, Green Chem. 2012, 14, 3281.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  L. J. Schwarz, B. Danylec, S. J. Harris, R. I. Boysen, M. T. W. Hearn, J. Chromatogr. A 2011, 1218, 2189.
         | Crossref | GoogleScholarGoogle Scholar | 21411106PubMed |

[5]  M. T. W. Hearn, S. Langford, K. L. Tuck, S. Harris, R. I. Boysen, V. T. Perchyonok, B. Danylec, L. Schwarz, J. Chowdhury, PCT Int. Appl. 269, WO2010085851 2010.

[6]  M. S. Syamala, V. Ramamurthy, J. Org. Chem. 1986, 51, 3712.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  F. D. Lewis, Adv. Photochem. 1986, 13, 165.

[8]  V. Cardile, R. Chillemi, L. Lombardo, S. Sciuto, C. Spatafora, C. Tringali, Z. Naturforsch C 2007, 62, 189.
         | Crossref | GoogleScholarGoogle Scholar | 17542483PubMed |

[9]  A. Francioso, A. Boffi, C. Villani, L. Manzi, M. D’Erme, A. Macone, L. Mosca, J. Org. Chem. 2014, 79, 9381.
         | Crossref | GoogleScholarGoogle Scholar | 25198795PubMed |

[10]  J. D. Dunitz, Acta Crystallogr. 1949, 2, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  T. Rodríguez-Cabo, I. Rodríguez, M. Ramil, R. Cela, J. Chromatogr. A 2015, 1410, 129.
         | Crossref | GoogleScholarGoogle Scholar | 26253832PubMed |

[12]  H. Shechter, W. J. Link, G. V. D. Tiers, J. Am. Chem. Soc. 1963, 85, 1601.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. Ito, T. Kajita, K. Kunimoto, T. Matsuura, J. Org. Chem. 1989, 54, 587.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  K. S. S. P. Rao, S. M. Hubig, J. N. Moorthy, J. K. Kochi, J. Org. Chem. 1999, 64, 8098.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller, E. B. Lobkovsky, R. H. Grubbs, J. Am. Chem. Soc. 1998, 120, 3641.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  H. Ulrich, D. V. Rao, F. A. Stuber, A. A. R. Sayigh, J. Org. Chem. 1970, 35, 1121.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  L. Zhang, G. Gellerstedt, Acta Chem. Scand. 1994, 48, 490.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  B. S. Green, L. Heller, J. Org. Chem. 1974, 39, 196.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  A. Jahnke, B. Beile, H. Meier, Helv. Chim. Acta 2011, 94, 2111.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. R. MacGillivray, G. S. S. Papaefstathio, T. Friščić, T. D. Hamilton, D.-K. Bučar, Q. Chu, D. B. Varshney, I. G. Georgiev, Acc. Chem. Res. 2008, 41, 280.
         | Crossref | GoogleScholarGoogle Scholar | 18281948PubMed |

[21]  H. S. Garg, R. Chaturvedi, D. S. Bhakuni, Z. Urbanczyk-Lipkowska, A. K. Bose, J. Nat. Prod. 1991, 54, 104.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. Kuroyanagi, Y. Yamamoto, S. Fukushima, A. Ueno, T. Noro, T. Miyase, Chem. Pharm. Bull. 1982, 30, 1601.

[23]  L. M. Szewczuk, S. H. Lee, I. A. Blair, T. M. Penning, J. Nat. Prod. 2005, 68, 36.
         | Crossref | GoogleScholarGoogle Scholar | 15679314PubMed |

[24]  R. Pezet, C. Perret, J. B. Jean-Denis, R. Tabacchi, K. Gindro, O. Viret, J. Agric. Food Chem. 2003, 51, 5488.
         | Crossref | GoogleScholarGoogle Scholar | 12926902PubMed |

[25]  P. Waffo-Teguo, A. Decendit, J. Vercauteren, G. Deffieux, J.-M. Mérillon, Phytochemistry 1996, 42, 1591.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  S.-H. Li, X.-M. Niu, S. Zahn, J. Gershenzon, J. Weston, B. Schneider, Phytochemistry 2008, 69, 772.
         | Crossref | GoogleScholarGoogle Scholar | 18028966PubMed |

[27]  K. Xiao, L. Xuan, Y. Xu, D. Bai, D. Zhong, H. Wu, Z. Wang, N. Zhang, Eur. J. Org. Chem. 2002, 564.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  B. C. Trela, A. L. Waterhouse, J. Agric. Food Chem. 1996, 44, 1253.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. Zarychta, C. G. Gianopoulos, A. A. Pinkerton, Bioorg. Med. Chem. Lett. 2016, 26, 1416.
         | Crossref | GoogleScholarGoogle Scholar | 26856924PubMed |

[30]  L. Tang, D. Dai, Y. Gong, J. Zhong, Acta Crystallogr. Sect. E 2011, 67, o3129.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  M. D. Cohen, G. M. J. Schmidt, F. I. Sonntag, J. Chem. Soc. 1964, 2000.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  M. K. Mishra, A. Mukherjee, U. Ramamurty, G. R. Desiraju, IUCrJ 2015, 2, 653.
         | Crossref | GoogleScholarGoogle Scholar | 26594373PubMed |

[33]  B.-F. Ruan, X.-F. Huang, H. Ding, C. Xu, H.-M. Ge, H.-L. Zhu, R.-X. Tan, Chem. Biodivers. 2006, 3, 975.
         | Crossref | GoogleScholarGoogle Scholar | 17193329PubMed |

[34]  A. Urbaniak, B. Warżajtis, U. Rychlewska, K. Kacprzak, Synthesis 2016, 48, 1002.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  CrysAlisPro - Data Collection and Processing Software (v1.171.40.68a) 2019 (Rigaku Oxford Diffraction: Yarnton, UK).

[36]  G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |